

ANSI/NISO Z39.88-2004 ISSN: 1041-5653

The OpenURL Framework for
Context-Sensitive Services

Abstract: The OpenURL Framework Standard defines an architecture for creating OpenURL
Framework Applications. An OpenURL Framework Application is a networked service
environment, in which packages of information are transported over a network. These
packages have a description of a referenced resource at their core, and they are transported
with the intent of obtaining context-sensitive services pertaining to the referenced resource. To
enable the recipients of these packages to deliver such context-sensitive services, each
package describes the referenced resource itself, the network context in which the resource is
referenced, and the context in which the service request takes place.

This Standard specifies how to construct these packages as Representations of abstract
information constructs called ContextObjects. To this end, the OpenURL Framework Standard
defines the following core components: Character Encoding, Serialization, Constraint
Language, ContextObject Format, Metadata Format, and Namespace. In addition, this
Standard defines Transport, a core component that enables communities to specify how to
transport ContextObject Representations. Finally, this Standard specifies how a community
can deploy a new OpenURL Framework Application by defining a new Community Profile, the
last core component.

This Standard defines the OpenURL Framework Registry and the rules that govern the usage
of this Registry. The OpenURL Framework Registry contains all instances of all core
components created by communities that have deployed OpenURL Framework Applications.
This Standard defines and registers the initial content of the OpenURL Framework Registry,
thereby deploying two distinct OpenURL Framework Applications.

An American National Standard
Developed by the
National Information Standards Organization

Approved: April 15, 2005
by the
American National Standards Institute

Published by the National Information Standards Organization

 NISO Press, Bethesda, Maryland, U.S.A.

ANSI/NISO Z39.88-2004

© NISO 2005

About NISO Standards
NISO Standards are developed by the Standards Committees of the National Information Standards
Organization. The development process is a strenuous one that includes a rigorous peer review of
proposed standards open to each NISO Voting Member and any other interested party. Final
approval of the standard involves verification by the American National Standards Institute that its
requirements for due process, consensus, and other approval criteria have been met by NISO. Once
verified and approved, NISO Standards also become American National Standards.

This standard may be revised or withdrawn at any time. For current information on the status of this
standard contact the NISO office or visit the NISO website at:
http://www.niso.org

Published by
NISO Press
4733 Bethesda Avenue, Suite 300
Bethesda, MD 20814
www.niso.org

Copyright © 2005 by the National Information Standards Organization

All rights reserved under International and Pan-American Copyright Conventions. For noncommercial purposes
only, this publication may be reproduced or transmitted in any form or by any means without prior permission in
writing from the publisher, provided it is reproduced accurately, the source of the material is identified, and the
NISO copyright status is acknowledged. All inquires regarding translations into other languages or commercial
reproduction or distribution should be addressed to: NISO Press, 4733 Bethesda Avenue, Suite 300, Bethesda,
MD 20814.

Printed in the United States of America

ISSN: 1041-5653 National Information Standards series
ISBN-10: 1-880124-61-0
ISBN-13: 978-1-880124-61-1

Library of Congress Cataloging-in-Publication Data

National Information Standards Organization (U.S.)

The OpenURL Framework for context-sensitive services : an American national
standard / developed by the National Information Standards Organization ; approved
April 13, 2005 by the American National Standards Institute.

p. cm. – (National information standards series)
"ANSI/NISO Z39.88-2004."
Includes bibliographical references.
ISBN-13: 978-1-880124-61-1
ISBN 10: 1-880124-61-0

1. Web services–Standards. 2. Uniform Resource Identifiers. I. American National Standards Institute.
II. Title. III. Series

TK5105.88813.N38 2006
006.7'6–dc22

2006044980

ANSI/NISO Z39.88-2004

© 2005 NISO i

Contents

Foreword v

1 Purpose and Scope.. 1

2 Referenced Standards... 2

3 Notational Conventions... 4

4 Definitions... 5

Part 1: ContextObjects and Transports 9

5 ContextObject, Entity, and Descriptor ... 11
5.1 ContextObject and Entity .. 11
5.2 Descriptor.. 12

5.2.1 Identifier .. 12
5.2.2 By-Value Metadata ... 13
5.2.3 By-Reference Metadata.. 13
5.2.4 Private Data.. 13

5.3 Constraints .. 14

6 Registry... 15
6.1 Registry Entries... 15
6.2 Registry Identifiers .. 17
6.3 Using the Registry... 17

7 Formats ... 18
7.1 Serializations [Registry] .. 19
7.2 Constraint Languages [Registry]... 20
7.3 Constraint Definitions.. 20

8 Representing ContextObjects .. 21
8.1 Character Encodings [Registry] .. 21
8.2 ContextObject Formats [Registry]... 22

9 Representing Entities .. 24
9.1 Namespaces [Registry]... 24
9.2 Metadata Formats [Registry]... 25

10 Transporting ContextObject Representations: Transports [Registry]................................... 27

11 Defining Applications: Community Profiles [Registry].. 28

Part 2: The KEV ContextObject Format 31

12 The KEV ContextObject Format ... 33
12.1 The KEV Serialization ... 33
12.2 The Z39.88-2004 Matrix Constraint Language... 34
12.3 Constraint Definitions in the KEV ContextObject Format ... 35

12.3.1 Z39.88-2004 Matrix Constraint Definition for the KEV ContextObject Format........... 35
12.3.2 Z39.88-2004 Matrix Constraint Definitions for KEV Metadata Formats 36

ANSI/NISO Z39.88-2004

ii © 2005 NISO

13 KEV ContextObject Representations ...37
13.1 Cardinality Constraints on the KEV ContextObject Format...38
13.2 Keys in the KEV ContextObject Format ..38

13.2.1 Keys for Entity Descriptors..39
13.2.2 Keys for By-Value Metadata Descriptors...40
13.2.3 Keys for By-Reference Metadata Descriptors ..40
13.2.4 Keys for Administrative Data...40

13.3 Character Encoding in the KEV ContextObject Format ..40
13.4 URL-Encoding in the KEV ContextObject Format...41

14 Entity Descriptors in the KEV ContextObject Format...41
14.1 Identifier Descriptors..41
14.2 By-Value and By-Reference Metadata Descriptors ..42

14.2.1 Rules Guiding By-Value and By-Reference Metadata Descriptors42
14.2.2 By-Value Metadata Descriptors ..43
14.2.3 By-Reference Metadata Descriptors...43

14.3 Private Data Descriptors..44
14.4 Example of a KEV ContextObject Representation..45

15 KEV-Based Community Profiles ...46

Part 3: The XML ContextObject Format 47

16 The XML ContextObject Format..49
16.1 The XML Serialization ...49
16.2 XML Schema as a Constraint Language...49
16.3 Constraint Definitions in the XML ContextObject Format..49

16.3.1 XML Schema Constraint Definition for the XML ContextObject Format.....................50
16.3.2 XML Schema Constraint Definitions for XML Metadata Formats54

17 XML ContextObject Representations ...62
17.1 Cardinality Constraints on the XML ContextObject Format ..63
17.2 Entity and Descriptor Elements in the XML ContextObject Format64
17.3 Administrative Elements and Attributes in the XML ContextObject Format..........................66
17.4 Character Encoding in the XML ContextObject Format ..66

18 Entity Descriptors in the XML ContextObject Format ..66
18.1 Identifier Descriptors..67
18.2 By-Value and By-Reference Metadata Descriptors ..67

18.2.1 Rules Guiding By-Value and By-Reference Metadata Descriptors67
18.2.2 By-Value Metadata Descriptors ..68
18.2.3 By-Reference Metadata Descriptors...69

18.3 Private Data Descriptors..69
18.4 Example of an XML ContextObject Representation..70

19 XML-Based Community Profiles...71

Part 4: OpenURL Transports 73

20 By-Reference OpenURL Transports...75
20.1 OpenURL Keys in By-Reference OpenURL Transports ...75
20.2 By-Reference OpenURL Transports using HTTP(S) GET..76
20.3 By-Reference OpenURL Transports using HTTP(S) POST ...77

ANSI/NISO Z39.88-2004

© 2005 NISO iii

21 By-Value OpenURL Transports .. 77
21.1 OpenURL Keys in By-Value OpenURL Transports .. 78
21.2 By-Value OpenURL Transports using HTTP(S) GET... 79
21.3 By-Value OpenURL Transports using HTTP(S) POST .. 80

22 Inline OpenURL Transports .. 81
22.1 OpenURL Keys in Inline OpenURL Transports .. 82
22.2 Inline OpenURL Transports using HTTP(S) GET... 83
22.3 Inline OpenURL Transports using HTTP(S) POST .. 84

Appendix A Responsibilities of the Maintenance Agency for the OpenURL Framework
Standard (informative) 87

Appendix B Specification of the Z39.88-2004 Matrix Constraint Language (normative) 89
B.1 The Z39.88-2004 Matrix Constraint Language... 89
B.2 Constraint Definitions in the KEV ContextObject Format ... 90

Appendix C The Level 1 San Antonio Community Profile (informative) 95
C.1 History ... 95
C.2 Maintenance of SAP1 ... 95
C.3 Introduction to SAP1 ... 95
C.4 Purpose and Scope .. 96
C.5 Registry Entries in SAP1... 97

Appendix D The Level 2 San Antonio Community Profile (informative) 99
D.1 History ... 99
D.2 Maintenance of SAP2 ... 99
D.3 Introduction to SAP2 ... 99
D.4 Purpose and Scope .. 99
D.5 Registry Entries in SAP2... 101

Appendix E Implementation Guidelines for the OpenURL Transports (informative) 103
E.1 Length of HTTP(S) GET URIs .. 103
E.2 URL-Encoding and URL-Decoding... 103
E.3 Parsing of HTTP(S) Query Strings ... 103

Figures
Figure 1: Core Components of the OpenURL Framework...16

Tables
Table 1: Fundamental ContextObject Constraints ...14
Table 2: Core Components and their Registry Identifiers ..17
Table 3: Registry Identifiers for Serializations ..19
Table 4: Registry Identifiers for Constraint Languages ..20
Table 5: Registry Identifiers for Character Encodings..22
Table 6: Registry Identifiers for ContextObject Formats ..23
Table 7: Registry Identifiers for Namespaces ..25
Table 8: Registry Identifiers for Registered Metadata Formats..26
Table 9: Registry Identifiers for Transports ..27
Table 10: Registry Identifiers for Community Profiles ..29
Table 11: SAP1 Community Profile, Excerpt..30

ANSI/NISO Z39.88-2004

iv © 2005 NISO

Table 12: Structure of the Z39.88-2004 Matrix .. 34
Table 13: Z39.88-2004 Matrix Constraint Definition of KEV ContextObject Format, Excerpt 36
Table 14: Z39.88-2004 Matrix Constraint Definition of KEV Metadata Format for “book”, Excerpt..... 37
Table 15: KEV ContextObject Format – Cardinality Constraints ... 38
Table 16: KEV ContextObject Format – Keys for Entity Descriptors... 39
Table 17: KEV ContextObject Format – Administration Key Prefix and Suffixes 40
Table 18: XML Schema Constraint Definition of XML ContextObject Format 50
Table 19: XML Schema Constraint Definition of XML Metadata Format for “journal” 55
Table 20: XML ContextObject Format – Cardinality Constraints ... 64
Table 21: XML ContextObject Format – Entities and Descriptors ... 65
Table 22: XML ContextObject Format – Administrative Information ... 66
Table 23: Structure of the Z39.88-2004 Matrix .. 89
Table 24: XHTML Template for Z39.88-2004 Matrix ... 91
Table 25: Use of ContextObject Entities in the Scholarly-Information Community.............................. 96
Table 26: SAP1 Registered Elements ... 97
Table 27: Use of ContextObject Entities in the Scholarly-Information Community............................ 100
Table 28: SAP2 Registered Elements ... 101

Examples
Example 1: Examples of Entities ... 12
Example 2: Identifiers for a Referent, Requester, and Resolver ... 12
Example 3: By-Value Metadata for a Referent .. 13
Example 4: By-Reference Metadata for a Requester .. 13
Example 5: Private Data for a Referent ... 14
Example 6: A Registry Entry .. 16
Example 7: Identification of a Character Encoding.. 22
Example 8: Identification of a ContextObject Format .. 24
Example 9: Identification of Entities using Identifiers from Namespaces .. 25
Example 10: Identification of Unregistered Metadata Formats.. 27
Example 11: KEV ContextObject Representation ... 38
Example 12: Identifier Descriptors in a KEV ContextObject Representation 41
Example 13: By-Value Metadata Descriptor in a KEV ContextObject Representation 43
Example 14: By-Reference Metadata Descriptor as a Property List ... 43
Example 15: Private Data Descriptor in a KEV ContextObject Representation 44
Example 16: KEV ContextObject Representation ... 45
Example 17: XML ContextObject Representation ... 63
Example 18: Identifier Descriptors in an XML ContextObject Representation 67
Example 19: Referent with a By-Value Metadata Descriptor... 68
Example 20: Requester with a By-Reference Metadata Descriptor .. 69
Example 21: ReferringEntity with a Private Data Descriptor ... 69
Example 22: XML ContextObject Representation ... 70
Example 23: By-Reference OpenURL Transport using HTTP GET.. 76
Example 24: By-Reference OpenURL Transport using HTTP POST ... 77
Example 25: By-Value OpenURL Transport using HTTP GET ... 79
Example 26: By-Value OpenURL Transport using HTTP POST... 80
Example 27: Inline OpenURL Transport using HTTP GET ... 83
Example 28: An HTML Form (POST Method) to generate an Inline OpenURL Transport 85
Example 29: Inline OpenURL Transport using HTTP POST... 85

ANSI/NISO Z39.88-2004

© 2005 NISO v

Foreword

(This foreword is not part of The OpenURL Framework for Context Sensitive Services,
ANSI/NISO Z39.88-2004. It is included for information only.)

History
As the World Wide Web began its explosive growth in the early 1990s, the scholarly-information
community made available digital scholarly materials, consisting of metadata and full-text content.
As this body of materials grew, it became increasingly difficult to provide adequate links between
related information assets, distributed across many collections and controlled by different
custodians. By 1999, the scholarly-information community had embarked on several linking efforts,
surveyed in Van de Sompel and Hochstenbach [R1].

In 1999, NISO started a series of invitational workshops to explore issues in the area of reference
linking. Representatives from the library, publishing, and information services communities
identified the appropriate-copy problem as a major issue, because its solution was expected to
solve other link-resolution problems. The appropriate-copy problem arises when multiple copies of
a resource exist, and each copy is governed by a different access policy. A specific user should be
directed to a copy of the resource that is governed by an access policy compatible with that user’s
access privileges. None of the proposed linking architectures could accomplish this.

A series of collaborations by Herbert Van de Sompel (Ghent University, Los Alamos National
Laboratory, and Cornell University), Patrick Hochstenbach (Ghent University), and Oren Beit-Arie
(Ex Libris) culminated in the solution of the appropriate-copy problem. Their solution also
addressed related issues in the delivery of context-sensitive services for the web-based scholarly
information environment. This collaboration resulted in:

• Development of the SFX linking server and the OpenURL architecture [R1] [R2] [R3].

• Publication of the OpenURL 0.1 specification that defines an HTTP GET syntax for
transporting metadata and identifiers from an information service to a linking server. The
transported metadata and identifiers describe a referenced item and some contextual
information [R4].

• Publication of the OpenURL Framework, which provides a design for context-sensitive
reference linking in the Web-based scholarly information environment [R5].

The scholarly-information community quickly embraced the OpenURL 0.1 specification. Publishers,
vendors of abstracting and indexing databases, preprint systems, and CrossRef (a Registration
Agency for Digital Object Identifiers or DOIs) introduced OpenURLs in their systems. Many libraries
implemented OpenURL-conformant linking servers that provide their users with context-sensitive
links. This quick adoption by so many constituents established OpenURL 0.1 as a de-facto
standard.

In preparation for the NISO Standardization effort, Herbert Van de Sompel and Oren Beit-Arie
studied OpenURLs in real environments and analyzed the information sent to OpenURL resolvers.
Based on this analysis, they proposed the Bison-Futé model [R6], a generalization of OpenURL 0.1
based on the notion of a ContextObject. A ContextObject is an information construct that formalizes
and generalizes the information packaged in OpenURL 0.1 requests:

ANSI/NISO Z39.88-2004 FOREWORD

vi © 2005 NISO

OpenURL 0.1 ContextObject

The OpenURL 0.1 specification explicitly includes
the referenced resource, the system that provides
the OpenURL (sid), and the linking server that is
the target of the OpenURL.

The ContextObject definition formalizes these
resources into, respectively, the Referent, the
Referrer, and the Resolver Entities.

OpenURL 0.1 usage showed that three more
resources were regularly described in the Private
Identifier (pid): the initiator of an OpenURL
transport (the user clicking the OpenURL), the
citing scholarly work, and the type of service
requested (for example, “provide full-text”).

The ContextObject definition formalizes these
resources into, respectively, the Requester, the
ReferringEntity, and the ServiceType Entities.

OpenURL 0.1 specifies one set of metadata keys
to describe a referenced scholarly work by inline
metadata.

The ContextObject definition generalizes this
description method into the By-Value Metadata
Descriptor of Entities. This Descriptor depends
on Metadata Formats that are made available
through registration in the OpenURL
Framework Registry.

OpenURL 0.1 specifies namespaces for identifiers
of referenced scholarly works, for the system that
provides the OpenURL, and for the target of the
OpenURL.

The ContextObject definition generalizes this
description method into the Identifier Descriptor
of Entities. This Descriptor depends on
Namespaces for Identifiers that are made
available through registration in the OpenURL
Framework Registry.

OpenURL 0.1 allows for private data to describe a
referenced scholarly work by a method that is
specific to the provider of the OpenURL. To
process this syntax, a linking server must enter
into some prior agreement with the provider of the
OpenURL.

The ContextObject definition generalizes this
description method into the Private Data
Descriptor of Entities.

OpenURL 0.1 usage showed that the Private
Identifier (pid) of OpenURL 0.1 often contains a
pointer to metadata describing the referenced
scholarly work.

The ContextObject definition generalizes this
description method into the By-Reference
Metadata Descriptor of Entities. This Descriptor
depends on Metadata Formats that are made
available through registration in the OpenURL
Framework Registry.

In 2001, NISO formed Committee AX to prepare this Standard. The Committee’s charge [R7] was
to develop an extensible mechanism for the representation and transportation of packages of
metadata and identifiers that are useful in the delivery of context-sensitive services. The table
above shows how the OpenURL 0.1 specification inspired the ContextObject concept of the Bison-
Futé model. The Committee took this concept as the starting point for its work. To achieve
extensibility, the Committee embedded the ContextObject concept in a general (and abstract)
framework, called the OpenURL Framework.

This framework is defined in Part 1 and consists of the following core components: Namespaces for
Identifiers, Character Encodings, Serializations, Constraint Languages, ContextObject Formats,
Metadata Formats, Transports, and Community Profiles. To create an instantiation of the OpenURL

FOREWORD ANSI/NISO Z39.88-2004

© 2005 NISO vii

Framework for a particular application domain, a community must specify and register specific
selections of these core components in the OpenURL Framework Registry.

Although it retains the name OpenURL in its title for historical reasons, the OpenURL Framework is
neutral with respect to application domain. The Committee hopes that the ContextObject specified
in this Standard will become a generic component for systems providing contextual services
pertaining to resources that are referenced on networks.

References

[R1] Van de Sompel H, Hochstenbach P. Reference Linking in a Hybrid Library Environment, Part
1: Frameworks for Linking. D-Lib Magazine, 1999. 5(4). doi:10.1045/april99-van_de_sompel-
pt1 [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-pt1.html>

[R2] Van de Sompel H, Hochstenbach P. Reference Linking in a Hybrid Library Environment, Part
2: SFX, a Generic Linking Solution. D-Lib Magazine, 1999. 5(4). doi:10.1045/april99-
van_de_sompel-pt2 [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-pt2.html>

[R3] Van de Sompel H, Hochstenbach P. Reference Linking in a Hybrid Library Environment, Part
3: Generalizing the SFX solution in the "SFX@Ghent & SFX@LANL" experiment. D-Lib
Magazine, 1999. 5(10). doi:10.1045/october99-van_de_sompel [online] [cited 4 November
2004] Available from World Wide Web:
<http://www.dlib.org/dlib/october99/van_de_sompel/10van_de_sompel.html>

[R4] Van de Sompel H, Hochstenbach P, Beit-Arie O (editors). OpenURL Syntax Description.
2000. [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.openurl.info/registry/docs/pdf/openurl-01.pdf>

[R5] Van de Sompel H, Beit-Arie O. Open Linking in the Scholarly Information Environment Using
the OpenURL Framework. D-Lib Magazine, 2001. 7(3). doi:10.1045/march2001-
vandesompel [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.dlib.org/dlib/march01/vandesompel/03vandesompel.html>

[R6] Van de Sompel H, Beit-Arie O. Generalizing the OpenURL Framework beyond References to
Scholarly Works: the Bison-Futé model. D-Lib Magazine, 2001. 7(7/8). doi:10.1045/july2001-
vandesompel [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.dlib.org/dlib/july01/vandesompel/07vandesompel.html>

[R7] National Information Standards Organization. The OpenURL Framework for Context-
Sensitive Services. Standards Committee AX. Charge. [online] [cited 4 November 2004]
Available from World Wide Web: <http://www.niso.org/committees/committee_ax.html>

Preamble
Wide adoption of any technology or process is often a result of its simplicity coupled with the
effective meeting of a market need. OpenURL has been embraced and adopted by the scholarly-
information community for these very reasons.

The early implementation of OpenURL was simple in concept: it used HTTP GET or POST to
transfer information about an item (a journal article, for example) from an online service to a linking
server. The specifications were simple. They described the protocol, the syntax, and how a
referenced item is to be represented by using particular sets of data element names on a URL. This
is best demonstrated by an example of an OpenURL:

http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-pt1.html
http://www.dlib.org/dlib/april99/van_de_sompel/04van_de_sompel-pt2.html
http://www.dlib.org/dlib/october99/van_de_sompel/10van_de_sompel.html
http://www.openurl.info/registry/docs/pdf/openurl-01.pdf
http://www.dlib.org/dlib/march01/vandesompel/03vandesompel.html
http://www.dlib.org/dlib/july01/vandesompel/07vandesompel.html
http://www.niso.org/committees/committee_ax.html

ANSI/NISO Z39.88-2004 FOREWORD

viii © 2005 NISO

http://www.example.com/resolver?genre=article
&atitle=p27-p16 Chimera: A Superior Antiproliferative
&title=Molecular Theory
&aulast=McArthur
&aufirst=James
&date=2001
&volume=3
&issue=1
&spage=8
&epage=13

Because of this simplicity, developers working for online service providers and developers of linking
servers could quickly understand how OpenURL worked and develop their own products. The
scholarly-information community responded by quickly adopting link resolvers as a basic
component of its digital library infrastructure.

The Committee recognized the status of this early version of OpenURL as a de facto standard. The
OpenURL Framework Standard (Z39.88-2004) refers to the early version as OpenURL 0.1, and the
OpenURL 0.1 specifications are retained in the OpenURL Framework Registry
<http://www.openurl.info/registry/docs/pdf/openurl-01.pdf>.

The simplicity of OpenURL 0.1 is due, in part, to the static nature of its syntax, the limited number of
genres supported, the fixed sets of data elements, and the fixed transport protocol (HTTP).
However, the fixed nature of OpenURL 0.1 not only limits its expansion within the scholarly-
information community, it also prevents other communities from adopting OpenURL for similar
needs. For example, OpenURL 0.1 cannot be extended to cover other genres of materials. It
cannot even extend the data element sets for existing genres. The OpenURL Framework Standard
is about providing such extensibility.

In developing this Standard, the Committee wanted to provide the needed extensibility while
retaining the simplicity of the original OpenURL. To accomplish this, the fundamentals of an
extensible framework had to be put in place. This document describes these fundamentals: the
framework upon which OpenURL can be extended with new genres, new data elements, different
character encodings (to support non-English use of the OpenURL), various network protocols, and
data representations.

Part 1 (Sections 5 through 11) describes the ContextObject. The ContextObject is the information
construct that describes an item that is the subject of a service request and the context within which
the request is being made. While the term ContextObject may be new, the concept it represents is
entirely compatible with OpenURL 0.1. Indeed, the original OpenURLs were precisely about a
request to provide a service (for example, asking a link server to provide a menu of relevant links)
expressed in an HTTP link, whereby the HTTP link described an item and provided some context
within which it was referenced. Part 1 formalizes the expression of the item description, its context,
and the service being requested. The definitions of all concepts are separated from their
representation and the protocol by which the representations are transported.

Very few bounds are placed on how ContextObjects can be extended or applied. The Committee
did not want to prescribe the limits on what kinds of creative applications there might be for
ContextObjects and the OpenURL Framework in other communities. For example, the Committee
could imagine storing ContextObjects in databases or using ContextObjects as the containers to
transfer item and context information between servers in a web services environment. Two linking
servers could talk to one another by exchanging ContextObjects. In the latter scenario,
ContextObjects might be transported using an XML-based protocol such as SOAP. OpenURL 0.1
did not provide such capabilities.

Such abstraction and open-endedness is sometimes disconcerting for the development community.
System providers may be reluctant to invest development resources if they fear that the Standard is

http://www.openurl.info/registry/docs/pdf/openurl-01.pdf

FOREWORD ANSI/NISO Z39.88-2004

© 2005 NISO ix

too general to be able to create interoperable solutions or that the Standard may change without
their knowledge or involvement. To address these issues, the Committee introduced the notions of
the OpenURL Framework Registry, OpenURL Framework Application, and Community Profile.

The OpenURL Framework Registry <http://www.openurl.info/registry> provides a mechanism for
the public disclosure of specific selections for the representation and transportation of
ContextObjects. For the purpose of this discussion, these selections will be described as registered
entries. Each registered entry is assigned a unique identifier so it may be referenced
unambiguously.

An OpenURL Framework Application is one instantiation of the OpenURL Framework meant for a
specific community of adopters in a particular application domain. In essence, Part 1 specifies how
a community can define their own OpenURL Framework Application. In general terms, a community
defines an OpenURL Framework Application by selecting entries from the Registry it needs to
represent and transport ContextObjects. If necessary and/or desired, the community may define
new entries and, subject approval of Registry administrators, register these new entries.

A Community Profile is an unambiguous summary of one OpenURL Framework Application. For an
implementer, the Community Profile unambiguously specifies the scope and boundaries of
compliance by listing a selection of registered entries that OpenURL Framework Applications within
that community are expected to support. To prevent a given Community Profile from becoming a
moving target for a developer, the Committee envisions the Registry being under strict version
control. When a community chooses to evolve its OpenURL Framework Application, it develops a
new Community Profile. It may have to create new entries, register them, and have new unique
identifiers assigned to them.

Part 2 (Sections 12 through 15) defines a ContextObject Format inspired by the query string of the
HTTP(S) GET request as specified in OpenURL 0.1. The Key/Encoded-Value or KEV
ContextObject Format defines how to represent a ContextObject as a concatenation of ampersand-
delimited Key/Encoded-Value pairs. The foremost purpose of the KEV ContextObject Format is
backward compatibility. It provides an elegant transition from the OpenURL 0.1 specification to this
Standard.

Part 3 (Sections 16 through 19) defines a ContextObject Format based on XML (eXtensible Markup
Language). XML Documents are widely used in the exchange of structured text and data between
computer applications. The XML ContextObject Format is about the future. Using the full expressive
power of the XML syntax, ContextObjects can convey greater detail, which Resolvers can use to
provide more appropriate services.

Part 4 (Sections 20 through 22) specifies mechanisms by which ContextObject Representations
can be transported using the HTTP(S) protocol. Collectively, these are called OpenURL Transports.

Parts 2, 3, and 4 define the initial content of the OpenURL Framework Registry, which is sufficient
to deploy two OpenURL Framework Applications. These two Applications are defined by two
Community Profiles: the Level 1 San Antonio Community Profile (SAP1) and the Level 2 San
Antonio Community Profile (SAP2). They are defined, respectively, in Appendix C and Appendix D.

SAP1 formalizes the OpenURL 0.1 specification under the new Standard and adds a few of the
enhancements requested by the scholarly-information community. To further assist developers in
transitioning their existing application to one that complies with SAP1, a set of Implementation
Guidelines have been created to provide step-by-step instructions
<http://www.openurl.info/registry/docs/implementation_guidelines>.

To illustrate how SAP1 retains the original simplicity of OpenURL 0.1, let us convert the OpenURL
0.1 sample given earlier to an OpenURL that conforms with the OpenURL Framework Application
defined by SAP1:

http://www.example.com/resolver?url_ver=Z39.88-2004
&url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx
&rft_val_fmt=info:ofi/fmt:kev:mtx:journal

http://www.openurl.info/registry
http://www.openurl.info/registry/docs/implementation_guidelines

ANSI/NISO Z39.88-2004 FOREWORD

x © 2005 NISO

&rft.genre=article
&rft.atitle=p27-p16 Chimera: A Superior Antiproliferative
&rft.jtitle=Molecular Theory
&rft.aulast=McArthur
&rft.aufirst=James
&rft.date=2001
&rft.volume=3
&rft.issue=1
&rft.spage=8
&rft.epage=13

Three new tags have been added for version control and format declaration (to describe to the
linking server what follows), and prefixes have been added to the tags to avoid ambiguity.

With tools like the Implementation Guidelines, the San Antonio Profiles, and the OpenURL
Framework Registry, the OpenURL Framework Standard extends the ideas underlying the original
OpenURL to new and creative uses, while it retains the simplicity of its predecessor.
Technical Considerations
Recognizing the international environments in which ContextObjects will be used, the Committee
selected Unicode as the abstract character repertoire for ContextObjects. Without excluding other
encoding forms, the Committee selected UTF-8 as the default encoding form of the Unicode Coded
Character Set.

This Standard originated in the scholarly-information community for the purpose of providing
context-sensitive linking services. The significantly more general OpenURL Framework is a
reflection of NISO’s charge to the Committee to develop an extensible Standard. Extensibility is
implemented through the OpenURL Framework Registry. Initially, this Registry contains entries that
support the creation of OpenURL Framework Applications in the scholarly-information community.
However, other user communities may add new entries to support different applications. The
Registry records the following:

• To support the representation of ContextObjects and the resources of which ContextObjects
convey descriptions:

− Character Encodings

− Formats to express ContextObjects, including the Serializations, Constraint Languages,
and Constraint Definitions used by those Formats. For example, the XML
ContextObject Format uses XML as its Serialization and is constrained by an XML
Schema.

− Namespaces used to identify resources of which ContextObjects contain descriptions

− Metadata Formats used to represent particular classes of resources of which
ContextObjects contain descriptions

• Methods to transport ContextObject Representations

• Community Profiles that list selections of the above made by specific communities for their
OpenURL Framework Application

The initial Registry contains two Formats to express ContextObjects: the Key/Encoded-Value
Format and the XML Format. Communities may define and register new ContextObject Formats,
thereby enabling the creation of new OpenURL Framework Applications. The initial Registry also
contains a suite of HTTP(S)-based methods to transport representations of ContextObjects. Two
Community Profiles are included in the initial content of the Registry. The Committee created these

FOREWORD ANSI/NISO Z39.88-2004

© 2005 NISO xi

to provide support for the existing OpenURL 0.1 application as used in the scholarly-information
community under this Standard.

The Level 1 San Antonio Community Profile (SAP1): A Community Profile that is based on the
Key/Encoded-Value Format to represent ContextObjects. It uses Namespaces and Metadata
Formats that are important to the scholarly-information community. In the definition of this
Community Profile, care has been taken to provide a certain level of backward compatibility with the
OpenURL 0.1 specification, while at the same time providing enhanced capabilities to describe
referenced resources and the network context in which the references occur.

The Level 2 San Antonio Community Profile (SAP2): A Community Profile that is based on the XML
Format to represent ContextObjects. It uses Namespaces and Metadata Formats that are important
to the scholarly-information community. It introduces a new level of expressiveness to describe
referenced resources and the network context in which the references occur.

Trademarks, Service Marks

Wherever used in this Standard, all terms that are trademarks or service marks are and remain the
property of their respective owners.

This Standard was processed and approved for submittal to ANSI by the National Information
Standards Organization. It was balloted by the NISO Voting Members January 26, 2004-March 10,
2004. This Standard will be up for review in 2009. Suggestions for improving this Standard are
welcome. They should be sent to the National Information Standards Organization, 4733 Bethesda
Avenue, Suite 300, Bethesda, MD 20814. NISO approval of this Standard does not imply that all
Voting Members voted for its approval.

Disclaimer

Use of this Standard is voluntary. NISO accepts no responsibility for any loss or damage caused to
any person or organization as result of any error, omission, or misleading statement in the
information presented in this Standard or due to implementing this Standard.

NISO Voting Members
At the time it approved this Standard, NISO had the following Voting Members:

3M
Susan Boettcher, John Nelson (Alt)

American Association of Law Libraries
Robert L. Oakley, Mary Alice Baish (Alt)

American Chemical Society
tba

American Library Association
Betty Landesman

American Society for Information Science and
Technology (ASIS&T)
Gail Thornburg

American Society of Indexers
Judith Gibbs

American Theological Library Association
Myron Chace

ARMA International
Diane Carlisle

Armed Forces Medical Library
Diane Zehnpfennig, Emily Court (Alt)

Art Libraries Society of North America
(ARLIS/NA)
Sarah McCleskey

AIIM International
Betsy A. Fanning

Association of Information and Dissemination
Centers (ASIDIC)
Marjorie Hlava

Association of Jewish Libraries
Caroline R. Miller, Elizabeth Vernon (Alt)

Association of Research Libraries (ARL)
Duane E. Webster, Julia Blixrud (Alt)

Auto-Graphics, Inc.
Paul Cope

ANSI/NISO Z39.88-2004 FOREWORD

xii © 2005 NISO

Barnes & Noble, Inc.
Douglas Cheney

Book Industry Communication
Brian Green

California Digital Library
Daniel Greenstein, John Kunze (Alt)

Cambridge Information Group
Michael Cairns, Matthew Dunie (Alt)

College Center for Library Automation (CCLA)
J. Richard Madaus, Ann Armbrister (Alt)

Colorado State Library
Brenda Bailey-Hainer, Steve Wrede (Alt)

CrossRef
Edward Pentz, Amy Brand (Alt)

Davandy, L.L.C.
Michael J. Mellinger

Docutek Information Systems
Philip Kesten, Slaven Zivkovic (Alt)

Dynix Corporation
Lynn Thackeray, Gail Wanner (Alt)

EBSCO Information Services
Gary Coker, Oliver Pesch (Alt)

Elsevier Science Inc.
Anthony Ross, John Mancia (Alt)

Endeavor Information Systems, Inc.
Verne Coppi, Cindy Miller (Alt)

Entopia, Inc.
Igor Perisic

Ex Libris
James Steenbergen

Fretwell-Downing Informatics
Matthew Goldner, Robin Murray (Alt)

Gale Group
Katherine Gruber, Justine Carson (Alt)

Geac Library Solutions
Eric Conderaerts, Eloise Sullivan (Alt)

GIS Information Systems, Inc.
Candy Zemon, Paul Huf (Alt)

H.W. Wilson Company
Ann Case, Patricia Kuhr (Alt)

Helsinki University Library
Juha Hakala

Index Data
Sebastian Hammer, David Dorman (Alt)

Information Use Management and Policy
Institute/FSU
Charles McClure, John Carlo Bertot (Alt)

Infotrieve
Jan Peterson

Innovative Interfaces, Inc.
Gerald M. Kline, Betsy Graham (Alt)

Institute for Scientific Information
Carolyn Finn

The International DOI Foundation
Norman Paskin

John Wiley & Sons, Inc.
Eric A. Swanson

Library Binding Institute
Joanne Rock

Library of Congress
Sally H. McCallum

The Library Corporation
Mark Wilson, Ted Koppel (Alt)

Los Alamos National Laboratory
Richard E. Luce

Lucent Technologies
M. E. Brennan

Medical Library Association
Nadine P. Ellero, Carla J. Funk (Alt)

MINITEX
Cecelia Boone, William DeJohn (Alt)

Modern Language Association
Daniel Bokser, B. Chen (Alt)

Motion Picture Association of America
Axel aus der Muhlen

MuseGlobal, Inc.
Kate Noerr, Clifford Hammond (Alt)

Music Library Association
Mark McKnight, David Summerfield (Alt)

National Agricultural Library
Eleanor G. Frierson, Gary K. McCone (Alt)

National Archives and Records Administration
Nancy Allard

National Federation of Abstracting and
Information Services (NFAIS)
Marjorie Hlava

National Library of Medicine
Betsy L. Humphreys

National Security Agency
Kathleen Dolan

Nylink
Mary-Alice Lynch, Jane Neale (Alt)

OCLC, Inc.
Larry Olszewski

Openly Informatics, Inc.
Eric Hellman

ProQuest Information and Learning
Todd Fegan, James Brei (Alt)

FOREWORD ANSI/NISO Z39.88-2004

© 2005 NISO xiii

Random House, Inc.
Laurie Stark

Recording Industry Association of America
Linda R. Bocchi, Michael Williams (Alt)

The Research Libraries Group
Lennie Stovel, Joan Aliprand (Alt)

Serials Solutions, Inc.
Mike McCracken

SIRSI Corporation
Greg Hathorn, Slavko Manojlovich (Alt)

Society for Technical Communication (STC)
Frederick M. O’Hara, Jr.,
Annette D. Reilly (Alt)

Society of American Archivists
Lisa Weber

Special Libraries Association (SLA)
Marcia Lei Zeng

Synapse Corporation
Trish Yancey, Dave Clarke (Alt)

TAGSYS, Inc.
John Jordon, Anne Salado (Alt)

Talis Information Ltd
Terry Willan, Katie Anstock (Alt)

Triangle Research Libraries Network
Mona C. Couts

U.S. Department of Commerce, NIST, Office of
Information Services
tba

U.S. Department of Defense, DTIC (Defense
Technical Information Center)
Gopalakrishnan Nair, Jane L. Cohen (Alt)

U.S. Department of Energy, Office of Scientific
& Technical Information
Ralph L. Scott, Karen J. Spence (Alt)

U.S. Government Printing Office
Judith C. Russell, T.C. Evans (Alt)

U.S. National Commission on Libraries and
Information Science (NCLIS)
Robert E. Molyneux

VTLS, Inc.
Carl Grant

WebFeat
Todd Miller, Paul Duncan (Alt)

NISO Board of Directors

At the time NISO approved this Standard, the following individuals served on its Board of Directors:

Jan Peterson, Chair
Infotrieve

Carl Grant, Vice Chair and Chair-Elect
VTLS, Inc.

Beverly P. Lynch, Immediate Past Chair
UCLA Graduate School of Education &
Information Studies

Michael J. Mellinger, Treasurer
Davandy, LLC

Patricia Stevens, Chair of SDC
OCLC, Inc.

Patricia R Harris, Executive Director /
Secretary
NISO

Directors:

Brian Green
BIC/EDItEUR

Daniel Greenstein
California Digital Library

Jose-Marie Griffiths
University of Pittsburgh

Deborah Loeding
The H. W. Wilson Company

Richard E. Luce
Los Alamos National Laboratory

Sally McCallum
Library of Congress

Oliver Pesch
EBSCO Publishing

ANSI/NISO Z39.88-2004 FOREWORD

xiv © 2005 NISO

Committee AX Members

The following individuals served on Committee AX, The OpenURL Framework for Context-Sensitive
Services:

Ann Apps
The University of Manchester, UK

Cliff Morgan (NISO SDC Liaison)
John Wiley & Sons, Ltd.

Oren Beit-Arie
Ex Libris (USA), Inc

Mark Needleman
SIRSI Corporation

Karim Boughida
Getty Research Institute

Eamonn Neylon
Manifest Solutions

Karen Coyle
University of California

Phil Norman
OCLC, Inc.

Todd Fegan
ProQuest Information and Learning

Oliver Pesch
EBSCO Publishing

Tony Hammond
Elsevier, Ltd. and (as of April 2004) Nature
Publishing Group

Harry Samuels
Endeavor Information Systems, Inc.

Eric Hellman
Openly Informatics, Inc.

Herbert Van de Sompel
Los Alamos National Laboratory

Lou Knecht
National Library of Medicine

Eric F. Van de Velde (Chair)
California Institute of Technology

Larry Lannom
Corporation for National Research Initiatives

Acknowledgements

Standards Committee AX gratefully acknowledges the contributions made by Herbert Van de Sompel
(Ghent University, Cornell University, Los Alamos National Laboratory); Patrick Hochstenbach (Ghent
University); and Oren Beit-Arie (Ex Libris USA, Inc). Their original research, visionary thinking, and
crucial contributions led to the formation of Committee AX and this Standard.

The Committee thanks the following individuals for their substantial assistance to the process of
creating this Standard: Mary Alice Ball, University of Chicago Press; Priscilla Caplan, Florida Center
for Library Automation; Young Jun Choi, KINS, Inc. (South Korea); Thom Hickey, OCLC; Marjorie
Hlava, Access Innovations, Inc.; Gail M. Hodge, CENDI; Mike Hoover, ProQuest Information and
Learning; Pat Stevens, OCLC; and Jeff Young, OCLC.

The Committee also thanks the following individuals for their efforts in providing the logistical support
for one or more Committee meetings: Jacqueline J. Eudell, CNI; and Patti Franklin, CNRI.

The Committee thanks the following institutions for providing meeting space and logistical support for
one or more Committee meetings: the California Institute of Technology, the Corporation for National
Research Initiatives, and the Getty Research Institute.

INTRODUCTION ANSI/NISO Z39.88-2004

© 2005 NISO 1

The OpenURL Framework
for Context-Sensitive Services

1 Purpose and Scope

The OpenURL Framework Standard defines an architecture for creating OpenURL Framework
Applications, briefly called Applications in the remainder of this Standard. An Application is a
networked service environment, in which packages of information are transported over a network.
These packages have a description of a referenced resource at their core, and they are
transported with the intent of obtaining context-sensitive services pertaining to the referenced
resource. To enable the recipients of these packages to deliver such context-sensitive services,
each package describes the referenced resource itself, the network context in which the resource
is referenced, and the context in which the service request takes place. These packages are
ContextObject Representations.

Part 1 (Sections 5 through 11) defines the ContextObject as an abstract information construct.
This Standard is independent of the application domain. It does not constrain the type of
resources that may be described in a ContextObject. However, it does specify how communities
can create concrete ContextObject Representations for use in their Applications. To that end, this
Standard introduces the following core components of the OpenURL Framework: Character
Encodings, Serializations, Constraint Languages, ContextObject Formats, Metadata Formats,
and Namespaces.

Although ContextObject Representations may reside as autonomous data files in information
systems, this Standard expects that ContextObject Representations will be transported between
networked systems. Section 10 defines Transports, a core component of the OpenURL
Framework in which communities specify how to transport ContextObject Representations in their
Applications. This Standard does not restrict the purpose of such transportation. It is expected,
however, that most transportations of ContextObject Representations will be requests for context-
sensitive services pertaining to the referenced resource.

The targets of the transportation of ContextObject Representations are networked systems that
are able to process ContextObject Representations and provide context-sensitive services. These
systems are called Resolvers. Resolver behavior and usage are outside of the scope of this
Standard. However, a community may use a Community Profile to define conformance for
Resolvers that operate in its application domain. A community specifies its selections for each of
the aforementioned core components in a Community Profile. This is the final core component of
the OpenURL Framework, and it is defined in Section 11.

Section 6 defines the OpenURL Framework Registry and the rules that govern its usage. The
OpenURL Framework Registry contains the selections for all core components made by
communities that define Applications. The Registry ensures that this Standard can be used in
many different application domains.

Parts 2, 3, and 4 specify the initial content of the OpenURL Framework Registry and provide
detailed definitions of the registered content. The initial Registry deploys two Applications for the
scholarly-information community. These Applications are defined by two Community Profiles:

• The Level 1 San Antonio Community Profile (SAP1), defined in Appendix C, is based on a
Key/Encoded-Value Representation of ContextObjects. Key/Encoded-Value
ContextObject Representations may be transported by any one of the three HTTP-based
Transports defined in Part 4. The Transport defined in Section 22 was developed to
provide a certain level of backward compatibility with the OpenURL 0.1 specification.

ANSI/NISO Z39.88-2004 INTRODUCTION

2 © 2005 NISO

• The Level 2 San Antonio Community Profile (SAP2), defined in Appendix D, is based on
an XML Representation of ContextObjects. XML ContextObject Representations may be
transported by any one of two HTTP-based Transports defined in Part 4, Sections 20 and
21. The SAP2 Community Profile is not backward compatible with the OpenURL 0.1
specification.

Part 2 (Sections 12 through 15) defines a ContextObject Format inspired by the query string of
the HTTP(S) GET request as specified in OpenURL 0.1. The Key/Encoded-Value ContextObject
Format defines how to represent a ContextObject as a concatenation of ampersand-delimited
Key/Encoded-Value pairs. The foremost purpose of the Key/Encoded-Value ContextObject
Format is backward compatibility. It provides an elegant transition from the OpenURL 0.1
specification to this Standard.

Part 3 (Sections 16 through 19) defines a ContextObject Format based on XML (eXtensible
Markup Language). XML Documents are widely used in the exchange of structured text and data
between computer applications. The XML ContextObject Format is about the future. Using the full
expressive power of the XML syntax, ContextObjects can be described in greater detail, which
Resolvers can use to provide more and better services.

Part 4 (Sections 20 through 22) specifies mechanisms by which ContextObject Representations
can be transported using the HTTP(S) protocol. Collectively, these are called OpenURL
Transports.

Communities interested in deploying new Applications should use Parts 2, 3 and 4 as a
guideline. Deploying a new Application consists of the following steps:

• Register any new definitions of the following core components of the OpenURL
Framework that are needed to support the Application: Character Encodings,
Serializations, Constraint Languages, ContextObject Formats, Metadata Formats,
Namespaces, and Transports.

• Construct a new Community Profile that defines the Application by selecting appropriate
Registry entries.

• Register the Community Profile.

Communities should create Implementation Guidelines to simplify implementation and
deployment of their Applications.

2 Referenced Standards

This Standard references the following existing standards:

[1] Extensible Markup Language (XML) 1.0. [online] Third edition. 4 February 2004 [online]
[cited 4 November 2004] Available from World Wide Web: <http://www.w3.org/TR/REC-xml>

[2] Extensible Markup Language (XML)—XML Path Language (XPATH). Version 1.0.
16 November 1999. [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.w3.org/TR/xpath>

[3] Extensible Markup Language (XML)—XML Schema Part 1: Structures. Second edition.
28 October 2004. [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.w3.org/TR/xmlschema-1/>

[4] Extensible Markup Language (XML)—XML Schema Part 2: Datatypes. Second edition.
28 October 2004. [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.w3c.org/TR/xmlschema-2/>

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xmlschema-1/
http://www.w3c.org/TR/xmlschema-2/

INTRODUCTION ANSI/NISO Z39.88-2004

© 2005 NISO 3

[5] IETF RFC 2119, Keywords for use in RFCs to Indicate Requirement Levels. March 1997.
[online] [cited 4 November 2004] Available from World Wide Web:
<http://www.ietf.org/rfc/rfc2119.txt>

[6] IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax. August 1988. [online]
[cited 4 November 2004] Available from World Wide Web:
<http://www.ietf.org/rfc/rfc2396.txt> (Draft revision of IETF RFC 2396 available from World
Wide Web: <http://www.ietf.org/internet-drafts/draft-fielding-uri-rfc2396bis-07.txt>. New RFC
number to be assigned.)

[7] Internet Assigned Naming Authority (IANA), List of Registered Character Sets. Last updated
2004-02-06. [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.iana.org/assignments/character-sets>

[8] Internet Assigned Naming Authority (IANA), Uniform Resource Identifier (URI) Schemes.
Last updated 10 October 2004. [online] [cited 4 November 2004] Available from World Wide
Web:
<http://www.iana.org/assignments/uri-schemes>

[9] Internet Assigned Naming Authority (IANA), Uniform Resource Names (URN) Namespaces
Last updated 10 October 2004. [online] [cited 4 November 2004] Available from World Wide
Web:
<http://www.iana.org/assignments/urn-namespaces>

[10] Data elements and interchange formats—Information interchange—Representation of dates
and times. ISO 8601:2000. Geneva: International Organization for Standardization,
Switzerland, 2000.

[11] The Unicode Standard Version 4.0. The Unicode Consortium. Reading, MA: Addison-
Wesley, 2000. Updates available from World Wide Web: <http://www.unicode.org/>

[12] W3C Date and Time Formats. Submitted to W3C 15 September 1997. [online] [cited
4 November 2004] Available from World Wide Web: <http://www.w3.org/TR/NOTE-
datetime>

[13] Character Encoding Model. Unicode Technical Report #17, Revision 5. 2004-09-09. [online]
[cited 4 November 2004] Available from World Wide Web:
<http://www.unicode.org/unicode/reports/tr17>

[14] IETF RFC 2616, Hypertext Transfer Protocol — HTTP/1.1. June 1999. [online] [cited 4
November 2004] Available from World Wide Web: <http://www.ietf.org/rfc/rfc2616.txt>

[15] The mailto URL scheme. IETF RFC 2368. The Internet Society, 1998. [online] [cited
4 November 2004] Available from World Wide Web: <http://www.ietf.org/rfc/rfc2368.txt>

[16] Using The ISSN (International Serial Standard Number) as URN (Uniform Resource Names)
within an ISSN-URN Namespace. IETF RFC 3044. The Internet Society, 2001. [online] [cited
4 November 2004] Available from World Wide Web: <http://www.ietf.org/rfc/rfc3044.txt>

[17] Carl Lagoze, Herbert Van de Sompel, Michael Nelson, Simeon Warner. The Open Archives
Initiative Protocol for Metadata Harvesting. Protocol version 2.0. Document version
2004/10/12T15:31:00Z. [online] [cited 4 November 2004] Available from World Wide Web:
<http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm>

[18] The Dublin Core Metadata Element Set. ANSI/NISO Z39.85-2001. Bethesda, MD: National
Information Standards Organization, 2001. [online] [cited 4 November 2004] Available from
World Wide Web: <http://www.niso.org/standards/resources/Z39-85.pdf>

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/urn-namespaces
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime
http://www.unicode.org/unicode/reports/tr17
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2368.txt
http://www.ietf.org/rfc/rfc3044.txt
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm
http://www.niso.org/standards/resources/Z39-85.pdf
http://www.unicode.org

ANSI/NISO Z39.88-2004 INTRODUCTION

4 © 2005 NISO

3 Notational Conventions

The Internet Engineering Task Force (IETF) RFC 2119 [5] specifies the meaning of the following
key words and key phrases: must, must not, required, shall, shall not, should, should not,
recommended, may, and optional. When these appear in this Standard in a bold italic font
style, they have the meaning as specified by IETF RFC 2119:

• must: This word, or the terms required or shall, mean that the definition is an absolute
requirement of the specification.

• must not: This phrase, or the phrase shall not, mean that the definition is an absolute
prohibition of the specification.

• should: This word, or the adjective recommended, mean that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full implications
must be understood and carefully weighed before choosing a different course.

• should not: This phrase, or the phrase not recommended mean that there may exist
valid reasons in particular circumstances when the particular behavior is acceptable or
even useful, but the full implications should be understood and the case carefully weighed
before implementing any behavior described with this label.

• may: This word, or the adjective optional, means that an item is truly optional. One
vendor may choose to include the item because a particular marketplace requires it or
because the vendor feels that it enhances the product while another vendor may omit the
same item. An implementation which does not include a particular option must be
prepared to interoperate with another implementation which does include the option,
though perhaps with reduced functionality. In the same vein an implementation which
does include a particular option must be prepared to interoperate with another
implementation which does not include the option (except, of course, for the feature the
option provides.)

Terms defined in this Standard will be shown in italics whenever this Standard uses them in the
defined meaning, as in ContextObject or By-Value Metadata.

References to Registry Identifiers or portions of Identifiers are shown in bold, as in info:doi/.

Throughout this Standard, examples are provided to support a better understanding of the key
terms as they are defined. The examples are excerpts from valid Representations of
ContextObjects. Many examples use an informal property-list syntax in which each property is
listed on a separate line and a property consists of a key term and associated value, as in:

<key> = <value>

This property-list syntax is for illustrative purposes only. It is not part of this Standard, and it must
not be used to represent ContextObjects in Applications. Parts 2 and 3 formally define two
ContextObject Formats (KEV and XML). Only ContextObject Formats that are formally defined in
the OpenURL Framework Registry are available for use in an Application.

Tables that specify constraints use the following short-hand notation:

Constraint in
short-hand

Minimum
Occurrence

Maximum
Occurrence

0 0 0
1 1 1
≥0 0 unbounded
≤1 0 1
≥1 1 unbounded

INTRODUCTION ANSI/NISO Z39.88-2004

© 2005 NISO 5

Some Section titles end with the suffix “[Registry]”, as in “Section 7.1 Serializations [Registry]".
These Sections define core components of the OpenURL Framework, and instantiations of these
core components must be registered.

This Standard uses many Identifiers based on the “info” URI scheme. On June 19th, 2003,
representatives from NISO, NISO Committee AX, the IETF, and the W3C met to discuss the
identification of resources in the OpenURL Framework. There was a consensus to proceed with
the registration of a new top-level URI scheme. The first Internet-Draft for the “info” URI scheme
was published on September 25th, 2003. A revision was published on December 5th, 2003. These
drafts and any subsequent versions will be maintained on the <http://info-uri.info/> website. At the
time of writing this Standard, the “info” URI scheme is awaiting approval by the Internet
Engineering Steering Group (IESG) for publication as an informational RFC.

4 Definitions

The following terms when italicized in this Standard have the meanings indicated here:

Term Definition

(OpenURL Framework) Application A networked service environment for the
transportation of ContextObject Representations.
The core characteristics of an Application are
specified in a Community Profile.

By-Reference Metadata A Descriptor that details properties of an Entity
by the combination of: (1) a URI reference to a
Metadata Format and (2) the network location of
a particular instance of metadata about the
Entity, the metadata being expressed according
to the indicated Metadata Format.

By-Reference OpenURL Transport A Transport that uses either the HTTP or the
HTTPS network protocol for conveying over a
network the reference to a ContextObject
Representation. This reference is contained in
the value associated with a single key within a
query string, which is transported using either a
GET or POST method.

By-Value Metadata A Descriptor that specifies properties of an Entity
by the combination of: (1) a URI reference to a
Metadata Format; and (2) a particular instance of
metadata about the Entity, expressed according
to the indicated Metadata Format.

By-Value OpenURL Transport A Transport that uses either the HTTP or the
HTTPS network protocol for conveying over a
network ContextObject Representations. The
Representation is contained in the value
associated with a single key within a query string,
which is transported using either a GET or POST
method.

http://info-uri.info/

ANSI/NISO Z39.88-2004 INTRODUCTION

6 © 2005 NISO

Term Definition

Character Encoding The combination of a character repertoire and an
encoding form; a core component of the
OpenURL Framework.

Community Profile The definition of an Application as a list of
selections for all core components of the
OpenURL Framework; a core component of the
OpenURL Framework.

Context The network environment in which a Referent is
referenced and in which a service request
pertaining to the Referent takes place. In the
ContextObject, the Context is expressed by five
Entities: the ReferringEntity, the Requester, the
ServiceType, the Resolver, and the Referrer.

ContextObject An information construct that binds a description
of a primary Entity — the referenced resource —
together with descriptions of Entities that indicate
the Context.

ContextObject Format A Format to represent ContextObjects; a core
component of the OpenURL Framework.

ContextObject Representation The Representation of a ContextObject
according to a ContextObject Format.

Constraint Definition A Constraint Definition specifies syntactic and
semantic constraints for the representation of a
given class of resources. The constraints are
specified using a Constraint Language.

Constraint Language A formalism used to specify syntactic and
semantic restrictions on information constructs of
a given class; a core component of the OpenURL
Framework.

Descriptor A Descriptor specifies information about an Entity
using one of the following four methods:
Identifier, By-Reference Metadata, By-Value
Metadata, or Private Data.

Entity One of the six possible constituents of a
ContextObject: Referent, Requester, Referrer,
Resolver, ReferringEntity, or ServiceType.

Format A concrete method of expression for a class of
information constructs. It is a triple comprising:
(1) a Serialization, (2) a Constraint Language,
and (3) a Constraint Definition expressed in that
Constraint Language.

Identifier A Descriptor that unambiguously specifies an
Entity by means of a URI.

INTRODUCTION ANSI/NISO Z39.88-2004

© 2005 NISO 7

Term Definition

Inline OpenURL Transport A Transport that uses either the HTTP or the
HTTPS network protocol for conveying over a
network the Representation of one, and only one,
ContextObject. This Representation consists of
multiple key/value pairs within a query string,
which is transported using either a GET or POST
method.

KEV ContextObject Format A ContextObject Format to represent one, and
only one, ContextObject as a string of
ampersand-delimited pairs, each pair consisting
of a key and an associated value that is URL
encoded.

KEV ContextObject (Representation) A Representation of a ContextObject that
conforms to the KEV ContextObject Format.

KEV Metadata Format A Metadata Format to represent an Entity as a
string of ampersand-delimited pairs, each pair
consisting of a key and an associated value that
is URL encoded.

KEV Metadata (Representation) A Representation of an Entity that conforms to a
KEV Metadata Format.

KEV Serialization A method to hold in storage, or transmit over a
network, the values within an information
construct as a string of ampersand-delimited
pairs, each pair consisting of a key and an
associated value that is URL encoded.

Metadata Format A Format to create a By-Reference Metadata
Descriptor or a By-Value Metadata Descriptor of
an Entity; a core component of the OpenURL
Framework.

Namespace The set of all Uniform Resource Identifiers that
comply with a specific URI scheme or a specific
URN namespace; a core component of the
OpenURL Framework.

Private Data A Descriptor that specifies information about an
Entity using a method not defined in this
Standard.

Referent A resource that is referenced on a network, and
about which the ContextObject is created; an
Entity of the ContextObject.

Referrer The resource that generates the ContextObject;
an Entity of the ContextObject.

ReferringEntity The resource that references the Referent; an
Entity of the ContextObject.

ANSI/NISO Z39.88-2004 INTRODUCTION

8 © 2005 NISO

Term Definition

(OpenURL Framework) Registry The Registry provides a mechanism to record
and publicize details of the core components of
the OpenURL Framework: Namespaces,
Character Encodings, Serializations, Constraint
Languages, ContextObject Formats, Metadata
Formats, Transports, and Community Profiles.

Registry Identifier A unique name assigned on registration to
specific Namespaces, Character Encodings,
Serializations, Constraint Languages,
ContextObject Formats, Metadata Formats,
Transports, and Community Profiles.

Representation A sequence of bytes that represents a resource
according to a Format.

Requester The resource that requests services pertaining to
the Referent; an Entity of the ContextObject.

Resolver The resource at which a service request
pertaining to the Referent is targeted; an Entity of
the ContextObject.

Serialization A method to hold in storage or transmit over a
network the values within an information
construct; a core component of the OpenURL
Framework.

ServiceType The resource that defines the type of service
(pertaining to the Referent) that is requested; an
Entity of the ContextObject.

Transport A network protocol and the method in which it is
used to convey ContextObject Representations;
a core component of the OpenURL Framework.

XML ContextObject Format A ContextObject Format to represent one or
more ContextObjects as an XML Document.

XML ContextObject (Representation) A ContextObject Representation that conforms to
the XML ContextObject Format.

XML Document A sequence of bytes that satisfies the validity
requirements of the Extensible Markup Language
(XML) 1.0 (Second Edition) W3C
Recommendation [1].

XML Metadata (Representation) A Representation of an Entity that conforms to an
XML Metadata Format.

XML Serialization The method of using an XML Document and
XML Format to represent a ContextObject.

 ANSI/NISO Z39.88-2004

© 2005 NISO 9

The OpenURL Framework
for Context-Sensitive Services
Part 1: ContextObjects and Transports

Part 1 (Sections 5 through 11) defines the core components of the OpenURL Framework:
Namespaces, Character Encodings, Serializations, Constraint Languages, ContextObject Formats,
Metadata Formats, Transports, and Community Profiles. Instances of these core components are
preserved and made publicly available in the OpenURL Framework Registry. A community that
wishes to create a new OpenURL Framework Application must create a new Community Profile. In
this Community Profile, the community must specify instances for all core components, except the
new Community Profile itself. If the Registry does not contain an instance of a core component
needed by an Application, it is necessary to define and register an appropriate instance of the core
component. The registration of a component makes this instance available for this or any other future
Application. For example, if an Application needs to use a particular Namespace, that Namespace
must be registered. Once registered, any Application may select this Namespace in its Community
Profile.

Section 5 defines the ContextObject as an abstract information construct that consists of six Entities:
Referent, ReferringEntity, Requester, ServiceType, Resolver, and Referrer. Each of these Entities is
described using one or more Descriptors. There are four Descriptor types: Identifier, By-Value
Metadata, By-Reference Metadata, and Private Data.

Section 6 defines the OpenURL Framework Registry and the rules that govern its usage. The
Registry contains all instances of core components created by communities that deployed
Applications. The Registry ensures that this Standard can be used in many different application
domains.

Sections 7, 8, and 9 provide the framework for developing, defining, and registering methods to
represent ContextObjects as character strings. Section 7 defines a Format as a triple consisting of a
Serialization, a Constraint Language, and a Constraint Definition. Section 8 introduces ContextObject
Formats and Character Encodings to represent ContextObjects. Section 9 introduces Metadata
Formats and Namespaces to represent Entities.

Although ContextObject Representations may reside as autonomous data files in information
systems, this Standard expects that ContextObject Representations will be transported between
networked systems. Section 10 defines Transports, a core component of the OpenURL Framework.
In a Transport, a community specifies how to convey over a network ContextObject Representations.
This Standard does not restrict the purpose of the Transport. It is expected, however, that most
Transports will be requests for context-sensitive services pertaining to the referenced resource (the
Referent) and will be targeted at Resolvers.

A community specifies its selections for each of the core components in a Community Profile. This
final core component of the OpenURL Framework is defined in Section 11.

ANSI/NISO Z39.88-2004 PART 1

10 © 2005 NISO

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 11

5 ContextObject, Entity, and Descriptor

This Section defines the fundamental data structure of the OpenURL Framework Standard: the
ContextObject. While this Standard does not restrict the use of the ContextObject to any particular
environment or application, it was constructed to enable the delivery of context-sensitive services in a
networked environment such as the Web.

The following scenario is used throughout this Section:

Caltech has an institutional linker server with URI http://links.caltech.edu/menu.

Jane Doe, a Caltech student with e-mail address jane.doe@caltech.edu, reads the following
electronic scholarly article in the Elsevier ScienceDirect® collection:

McArthur, James G. et al. 2001. p27-p16 Chimera: A Superior Antiproliferative for the
Prevention of Neointimal Hyperplasia. Molecular Therapy. 3(1) 8-13.
<doi:10.1006/mthe.2000.0239>

In the reference list of that article, she comes across a reference to the following article:

Bergelson, J. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses
2 and 5. Science. (275) 1320-1323. <doi:10.1126/science.275.5304.1320> <pmid:9036860>

In this example, Jane Doe wants services for the Bergelson article, to which she found a reference in
ScienceDirect®. Jane Doe might want the full text of the article. The full text may be available from
ScienceDirect® itself, an aggregator, or Caltech's interlibrary-loan department. The full-text service
therefore depends on the identity and affiliation of the Jane Doe, which are part of the context of the
reference to the Bergelson article. In other cases, different contextual information may be important.

The ContextObject data structure captures relevant information for the delivery of context-sensitive
services pertaining to a referenced resource. Based on a study of real-world OpenURL 0.1 usage, the
Committee included the following in the ContextObject data structure:

• a description of the referenced resource itself (the Bergelson article),

• a description of the resource that makes the reference (the McArthur article), and

• a description of four other resources that are useful in fulfilling service requests pertaining to
the referenced resource:

1. the agent requesting the service (Jane Doe),

2. the type of service that is requested (full text),

3. the system at which the service request is targeted (Caltech linking server), and

4. the system where the service request originates (ScienceDirect®).

The formal definition of ContextObject follows.

5.1 ContextObject and Entity

A ContextObject is a data structure that binds together descriptions of:

• A Referent: A resource that is referenced on a network and about which the ContextObject is
created

• A ReferringEntity: The resource that references the Referent

• A Requester: The resource that requests services pertaining to the Referent

ANSI/NISO Z39.88-2004 PART 1

12 © 2005 NISO

• A ServiceType: The resource that defines the type of service (pertaining to the Referent) that
is requested

• A Resolver: The resource at which a service request pertaining to the Referent is targeted

• A Referrer: The resource that generates the ContextObject

The ContextObject is created to enable the delivery of services pertaining to the Referent, which is at
the core of the ContextObject. The descriptions of the ReferringEntity, the Requester, the
ServiceType, the Resolver, and the Referrer express the Context in which the Referent is referenced
and in which the request for services pertaining to the Referent takes place.

The remainder of this Standard uses the term Entity to refer to any of the six types of resources that
may be described in a ContextObject.

Example 1 uses the scenario introduced above to illustrate all Entities of the ContextObject.
Example 1: Examples of Entities

Entity Example

Referent The scholarly article by Bergelson
ReferringEntity The scholarly article by McArthur
Requester Jane Doe
ServiceType Full text of the Bergelson article
Resolver The Caltech linking server
Referrer Elsevier’s ScienceDirect®

5.2 Descriptor

A Descriptor specifies information about an Entity. This Section defines the four types of Descriptors
that are available in this Standard: Identifier, By-Value Metadata, By-Reference Metadata, and
Private Data.

5.2.1 Identifier

An Identifier Descriptor unambiguously specifies the Entity by means of a Uniform Resource Identifier
(URI). This URI either points to the Entity itself or to metadata that specify the Entity.

Example 2: Identifiers for a Referent, Requester, and Resolver

rft_id = info:doi/10.1126/science.275.5304.1320
rft_id = info:pmid/9036860
req_id = mailto:jane.doe@caltech.edu
res_id = http://links.caltech.edu/menu

Example 2 shows Identifier Descriptors for a Referent (the Bergelson article), a Requester (Jane
Doe), and a Resolver (the Caltech linking server) using the informal property-list syntax of Section 3.
The key names (rft_id, for example) resemble those introduced in Part 2 of this Standard. However,
Part 1 of this Standard uses these names for illustration only and does not formally define them.

The Digital Object Identifier (DOI) 10.1126/science.275.5304.1320 identifies the Bergelson article. As
such, the URI info:doi/10.1126/science.275.5304.1320 is an Identifier Descriptor for the Referent.
The PubMed identifier 9036860 identifies metadata for the Bergelson article. Therefore, the URI
info:pmid/9036860 is also an Identifier Descriptor for the Referent.

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 13

The e-mail address jane.doe@caltech.edu describes Jane Doe. The corresponding URI
mailto:jane.doe@caltech.edu is an Identifier Descriptor for this Requester.

The URI http://links.caltech.edu/menu describes the institutional linking server at Caltech and is an
Identifier Descriptor for this Resolver.

5.2.2 By-Value Metadata

A By-Value Metadata Descriptor specifies properties of the Entity by the combination of: (1) a URI
reference to a Metadata Format; and (2) a particular instance of metadata about the Entity expressed
according to this Metadata Format.

Example 3: By-Value Metadata for a Referent

rft_val_fmt = info:ofi/fmt:kev:mtx:journal
rft.aulast = Bergelson
rft.auinit = J
rft.date = 1997
rft.atitle = Isolation of a common receptor for coxsackie B viruses and
adenoviruses 2 and 5
rft.jtitle = Science
rft.volume = 275
rft.spage = 1320
rft.epage = 1323

Example 3 shows a By-Value Metadata Descriptor for a Referent, the Bergelson article.

The URI specified as the value of the rft_val_fmt key (info:ofi/fmt:kev:mtx:journal) identifies the
Metadata Format used to describe the Bergelson article. Sections 6, 7, and 8 explain how to
construct and interpret Registry Identifiers for Formats, such as info:ofi/fmt:kev:mtx:journal. This
particular Registry Identifier identifies a Metadata Format for a journal article.

The remaining lines in Example 3 are metadata properties for the Referent. The metadata keys
(aulast, auinit, date, etc.) are from the identified Metadata Format for a journal article. The metadata
keys are prefixed with rft. to indicate that the metadata describe the Referent.

5.2.3 By-Reference Metadata

A By-Reference Metadata Descriptor specifies properties of the Entity by the combination of: (1) a
URI reference to a Metadata Format; and (2) the network location — specified by means of a URI —
of a particular instance of metadata about the Entity expressed according to this Metadata Format.

Example 4: By-Reference Metadata for a Requester

req_ref_fmt = http://lib.caltech.edu/mxt/ldap.html
req_ref = ldap://ldap.caltech.edu:389/janed

Example 4 shows a By-Reference Metadata Descriptor for a Requester, Jane Doe. The value
associated with the req_ref key is a pointer to (or network location of) Jane Doe’s entry in the Caltech
LDAP directory server. The value of the req_ref_fmt key specifies the Metadata Format of the
document to which the value of the req_ref key points.

5.2.4 Private Data

A Private Data Descriptor specifies information about the Entity using a method not defined in this
Standard. This Standard does not provide any global mechanisms to interpret Private Data. Instead, it
is assumed that the Resolver and the Referrer have a common understanding, based on a tacit or

ANSI/NISO Z39.88-2004 PART 1

14 © 2005 NISO

explicit bilateral agreement. To make it possible for the Resolver to interpret Private Data, a
ContextObject that contains Private Data should identify the Referrer that created it.

Example 5: Private Data for a Referent

rft_dat = cites/8///citedby/12
rfr_id = info:sid/elsevier.com:ScienceDirect

Example 5 shows a Private Data Descriptor for a Referent. The value associated with the rft_dat key,
cites/8///citedby/12, is Private Data provided about the Referent. The value associated with the
rfr_id key, info:sid/elsevier.com:ScienceDirect, is an Identifier Descriptor of the Referrer. Knowing
the identity of the Referrer might help the Resolver to interpret the Private Data.

5.3 Constraints

The number of occurrences of each Entity that may be present in a ContextObject is constrained:

• A ContextObject must contain exactly one Referent.

• A ContextObject may contain at most one ReferringEntity, Requester, and Referrer.

• A ContextObject may contain zero or more ServiceTypes and Resolvers.

These fundamental constraints are summarized in the first two columns of Table 1.

The remaining columns of Table 1 indicate that:

• All four Descriptors may be used to describe each of the Entities.

• Each type of Descriptor may be used zero or more times for the description of a specific
Entity. No ordering or priority is defined for multiple Descriptors.

Table 1: Fundamental ContextObject Constraints

Entity Number Descriptors

 Identifier By-Value
Metadata

By-Reference
Metadata

Private
Data

Referent 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0
ReferringEntity ≤ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0
Requester ≤ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0
ServiceType ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0
Resolver ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0
Referrer ≤ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

ContextObject Formats that define specific methods to represent ContextObjects (see Section 8.2)
must not relax the constraints expressed in Table 1, but they may restrict them:

• A ContextObject Format may limit the number of occurrences of ServiceType and Resolver
Entities.

• A ContextObject Format may limit the number of Descriptors that may be used to describe
each Entity.

• A ContextObject Format must not allow multiple Referent, ReferringEntity, Requester, or
Referrer Entities.

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 15

Any additional constraints must be specified in ContextObject Format definitions.

When one Entity of a ContextObject is described by multiple Descriptors, those Descriptors must
describe the same resource. For example, when a ContextObject contains two Identifier Descriptors
and one By-Value Metadata Descriptor for one Referent Entity, all three Descriptors must describe
the same Referent.

When there are multiple occurrences of the same Entity in one ContextObject, each occurrence must
represent a different resource. These multiple occurrences must not be interpreted as variant
descriptions of the same resource. For example, two Resolver Entities contained in one
ContextObject must represent two distinct Resolvers. In this case, each Resolver Entity may have
multiple Descriptors, each of which must be a variant description of the same Resolver.

ContextObject Formats that allow multiple occurrences of ServiceType and/or Resolver Entities must
define how multiple Descriptors are grouped to bind to particular Entities.

The basic data model for ContextObjects does not constrain the number of ContextObjects that may
be represented in an instance document that conforms to the ContextObject Format. ContextObject
Formats may constrain this number, and each Community Profile provides this information (see
Sections 11, 15, and 19).

6 Registry

This Section defines the OpenURL Framework Registry, referred to as the Registry in the remainder
of this Standard. It is based at <http://www.openurl.info/registry>.

Upon approval of this Standard, NISO will establish one or more Maintenance Agencies for the
Registry. The responsibilities and duties for Maintenance Agencies of the OpenURL Framework
Standard are specified in Appendix A.

6.1 Registry Entries

When a community defines an Application, it must specify selections for each of the core
components of the OpenURL Framework:

• For representing ContextObjects:

− Character Encodings (one or more)

− Serializations (one)

− Constraint Languages (one)

− ContextObject Formats (one)

• For representing Entities of ContextObjects:

− Namespaces (zero or more)

− Metadata Formats (zero or more)

• For transporting ContextObject Representations:

− Transports (one or more)

• For defining Applications:

− Community Profiles (one)

http://www.openurl.info/registry

ANSI/NISO Z39.88-2004 PART 1

16 © 2005 NISO

Figure 1 illustrates the structure of the Registry and shows how Community Profiles define the
characteristics of an Application by listing community-specific selections for the core components of
the OpenURL Framework.

Figure 1: Core Components of the OpenURL Framework

info:ofi/pro:_

Community Profiles

info:ofi/fmt:_:_:ctx

ContextObject
Formats

info:ofi/tsp:_

Transports

info:ofi/fmt:_:_:_

Metadata Formats

info:ofi/nam:

Namespaces

info:ofi/fmt:_

Physical
Representations

info:ofi/enc:_

Character Encodings

info:ofi/fmt:_:_

Constraint
Languages

info:ofi/nam:

Namespaces

info:ofi/fmt:_:_:ctx

ContextObject
Formats

info:ofi/enc:_

Character Encodings

info:ofi/fmt:_

Serializations

info:ofi/fmt:_:_

Constraint
Languages

info:ofi/pro:_

Community Profiles

info:ofi/tsp:_

Transports

info:ofi/fmt:_:_:_

Metadata Formats

Example 6: A Registry Entry

info:ofi/nam:info:doi:
dc:title Namespace for Digital Object Identifiers
dc:creator International DOI Foundation
dc:date 2004-01-01
dc:identifier http://errol.oclc.org/info-uri.info/info:doi/?metadataPrefix=reg
dc:identifier http://errol.oclc.org/info-uri.info/info:doi/.reg
dc:identifier info:doi/

Example 6 shows a Registry entry that describes an instance of a Namespace, a core component of
the OpenURL Framework introduced in Section 9.1. This entry describes the Namespace of Digital
Object Identifiers (DOI), which is introduced in Appendix C. The top row displays the Registry
Identifier of the Registry entry, and remaining rows use Dublin Core metadata [18] to describe the
Registry entry (see Sections 6.2 and 6.3).

Part 1 is concerned with the OpenURL Framework; it does not register specific instances of core
components. In Parts 2, 3, and 4 and Appendices Appendix B, Appendix C, and Appendix D, this
Standard defines, registers, and uses specific instances of core components. However, Registry
entries in this Standard are provided for illustrative purposes only and are often only partially
displayed. For example, the dc:date field is usually omitted as it is 2004-01-01 for all entries in the

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 17

initial Registry. The authoritative Registry entries are in the online Registry at
<http://www.openurl.info/registry/>.

6.2 Registry Identifiers

Upon registration, each instance of a core component receives a unique Registry Identifier, which is a
URI of the form info:ofi/char-string, where:

• info is the name of the URI scheme;

• ofi represents the namespace under the info scheme reserved for Registry Identifiers; and

• char-string must be replaced by a unique character string assigned by the Registry upon
registration of the instance of the core component.

Table 2 summarizes where to find information related to Registry Identifiers for core components. The
first column lists core components. The second column displays the structure of their Registry
Identifiers. The third column lists which Section defines each core component. The fourth and fifth
columns (with KEV and XML heading, respectively) give the Sections and Appendices where
instances of core components are introduced. This Standard initializes the Registry with entries that
bootstrap two Applications for the scholarly-information community: one Application based on the
KEV ContextObject Format and one based on the XML ContextObject Format. These entries may
also be used by other communities.

Table 2: Core Components and their Registry Identifiers

Core Component Registry Identifier
Structure

Framework KEV XML

Serializations info:ofi/fmt:_ 7.1 12.1 16.1
Constraint
Languages

info:ofi/fmt:_:_ 7.2 12.2 16.2

Character Encodings info:ofi/enc:_ 8.1 13.3 17.4
ContextObject
Formats

info:ofi/fmt:_:_:ctx(1) 8.2 12.3.1 17.3

Namespaces info:ofi/nam:_ 9.1 C.5 D.5
Metadata Formats info:ofi/fmt:_:_:_ (2) 9.2 14.2 18.2
Transports info:ofi/tsp:_ 10 20, 21 22 20, 21
Community Profiles info:ofi/pro:_ 11 15, Appendix C 19, Appendix D
(1) The last component of Registry Identifiers for ContextObject Formats must start with the reserved prefix ctx.

(2) The last component of Registry Identifiers for Metadata Formats must not be named with the reserved prefix ctx.

6.3 Using the Registry

Given the Registry Identifier of a Registry entry, it is possible to obtain the Dublin Core metadata
description and the actual definition of the entry. (In the URIs shown below, replace the bold and
underlined keyword registry-identifier with the Registry Identifier of the Registry entry.)

The Dublin Core metadata description [18] of the entry is available in two forms:

• for display in a web browser: <http://www.openurl.info/registry/dc/registry-identifier>

• for direct access: <http://www.openurl.info/registry/docs/dc/registry-identifier>

The Dublin Core metadata may include dc:identifier fields, each containing a URI that points to a
definition of the Registry entry. This mechanism provides access to multiple forms of the definition.

The following standard form URI always resolves to a definition of the registered resource:

http://www.openurl.info/registry/

ANSI/NISO Z39.88-2004 PART 1

18 © 2005 NISO

• <http://www.openurl.info/registry/docs/registry-identifier>

If there are one or more dc:identifier fields in the Registry entry, the standard form URI resolves to
the URI contained in the first dc:identifier field. There is no standard form URI available to access
definitions pointed to by URIs in subsequent dc:identifier fields.

In Example 6, the Registry Identifier of the DOI Namespace is info:ofi/nam:info:doi:, and its Dublin
Core metadata description is available in two forms:

• for display in a web browser: <http://www.openurl.info/registry/dc/info:ofi/nam:info:doi:>

• for direct access: <http://www.openurl.info/registry/docs/dc/info:ofi/nam:info:doi:>

The standard form URI <http://www.openurl.info/registry/docs/info:ofi/nam:info:doi:> refers to the
definition of the registered resource itself (the DOI Namespace), which is described by the Dublin
Core metadata shown above.

Because there are one or more dc:identifier fields in this Registry entry, a resolution mechanism
redirects the standard form URI to the URI in the first dc.identifier field. This URI,
<http://errol.oclc.org/info-uri.info/info:doi/?metadataPrefix=reg>, resolves to a browser display of the
definition of the DOI Namespace under the “info” URI scheme.

The URI in the second dc:identifier field, <http://errol.oclc.org/info-uri.info/info:doi/.reg>, points to the
raw XML record defining the DOI Namespace under the “info” URI scheme (as opposed to the HTML
rendition of this record).

The URI in the third dc:identifier field points to the info:doi/ namespace in the “info” URI scheme.

In the initial Registry, URIs following the pattern <http://www.openurl.info/registry/docs/registry-
identifier> are reserved for “native forms”, while the rest of the Registry is suitable for web browsing.
The initial Registry contains the following entry types stored inside the Registry:

• Items described by Dublin Core metadata formatted for web browsing use the URI pattern
<http://www.openurl.info/registry/dc/registry-identifier>. These same items in their native
form use the URI pattern <http://www.openurl.info/registry/docs/dc/registry-identifier>. In this
case, the native form is an XML Document that conforms to the XML Schema located at
<http://www.openarchives.org/OAI/2.0/oai_dc.xsd>.

• In Section 11, an XML Schema to define Community Profiles will be introduced. Web-
browsable definitions of Community Profiles will use the URI pattern
<http://www.openurl.info/registry/pro/registry-identifier>, and XML-based definitions will use
the URI pattern <http://www.openurl.info/registry/docs/pro/registry-identifier>.

• In Part 2, Z39.88-2004 Matrix Constraint Definitions for Registry entries related to the KEV
ContextObject Format will use the URI patterns <http://www.openurl.info/registry/mtx/registry-
identifier> and <http://www.openurl.info/registry/docs/mtx/registry-identifier>.

• In Part 3, XML Schema Constraint Definitions for Registry entries related to the XML
ContextObject Format will use the URI pattern <http://www.openurl.info/registry/xsd/registry-
identifier> for web-browsable displays and the URI pattern
<http://www.openurl.info/registry/docs/xsd/registry-identifier> for XML Schemas.

The initial Registry supports the Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH)
[17] as a machine interface for downloading Registry materials.

7 Formats

To enable the use of a wide variety of Representations of ContextObjects and their Entities, this
Standard defines the notion of a Format.

http://www.openarchives.org/OAI/2.0/oai_dc.xsd

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 19

A Format is a method to represent information constructs as character strings.

Each Format consists of a Serialization, a Constraint Language, and a Constraint Definition
expressed using the Constraint Language. In this Standard, the set of three items defining a Format
is called a triple and is represented by a short-hand notation as in:

{ Serialization, Constraint Language, Constraint Definition }

In Section 8.2, the Format notion is used to define ContextObject Format, which gives communities
the ability to define, register, and use ContextObject Representations that are the most appropriate
for their application domain. In Section 9.2, the Format notion is used to define Metadata Format,
which gives communities the ability to define, register, and use appropriate methods to describe
Entities of ContextObjects by means of By-Value or By-Reference Metadata Descriptors.

7.1 Serializations [Registry]

For representing ContextObjects and their Entities, this Standard supports the use of a variety of
Serializations.

A Serialization is a method by which structured information can be held in storage and/or can be
transmitted over a network.

The description of a resource, such as a ContextObject or an Entity, is often a hierarchical and
complex structure at the conceptual level. The form in which it is stored and/or transmitted over a
network, however, is a simple character string. An example of such a storage and/or transmission
form is XML.

Serializations must be registered before use in an Application.

Communities may use Serializations that are already in the Registry, or they may register additional
Serializations as needed.

Upon registration, a Serialization is assigned a Registry Identifier, formed by concatenating three
character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• fmt:, the character string used to introduce Format-related Identifiers in the info:ofi/
Namespace

• a character string that is assigned on registration and identifies the Serialization.

Registry Identifiers of Serializations are used to support Registry management and to identify
Serializations in Community Profiles. In typical use, Registry Identifiers of Serializations do not show
up in Representations of ContextObjects or their Entities.

Table 3: Registry Identifiers for Serializations

“info” URI Namespace Format-related Serialization Registry Identifier

info:ofi/ fmt: kev info:ofi/fmt:kev

info:ofi/ fmt: xml info:ofi/fmt:xml

Table 3 illustrates the construction of Registry Identifiers for the two Serializations in the initial
Registry:

• KEV: A resource is represented as a string of ampersand-delimited pairs, each pair consisting
of a key and an associated URL-encoded value. In the remainder of this Standard,
Key/Encoded-Value is abbreviated as KEV. (See Section 12.1.)

ANSI/NISO Z39.88-2004 PART 1

20 © 2005 NISO

• XML: A resource is represented as an XML Document. (See Section 16.1.)

7.2 Constraint Languages [Registry]

For expressing syntactic and semantic constraints on the representation of ContextObjects and their
Entities, this Standard supports the use of a variety of Constraint Languages.

A Constraint Language is a method to specify syntactic and semantic restrictions on information
constructs of a given class that are to be serialized. Each Constraint Language is tied to one
Serialization.

Constraint Languages must be registered before use in an Application.

Communities may use Constraint Languages that are already in the Registry, or they may register
additional Constraint Languages as needed.

Upon registration, a Constraint Language is assigned a Registry Identifier, formed by concatenating
four character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• fmt:, the character string to introduce Format-related Identifiers in the info:ofi/ Namespace

• a character string that identifies the registered Serialization to which the Constraint Language
is tied followed by a colon character (‘:’)

• a character string that is assigned on registration and identifies the Constraint Language.

Registry Identifiers of Constraint Languages are used to support Registry management and to identify
Constraint Languages in Community Profiles. In typical use, Registry Identifiers of Constraint
Languages do not show up in Representations of ContextObjects or their Entities.

Table 4: Registry Identifiers for Constraint Languages

“info” URI Namespace Format-related Serialization Constraint
Language

Registry Identifier

info:ofi/ fmt: kev: mtx info:ofi/fmt:kev:mtx

info:ofi/ fmt: xml: xsd info:ofi/fmt:xml:xsd

Table 4 illustrates the construction of Registry Identifiers for the two Constraint Languages in the
initial Registry (see Sections 12.2 and 16.2):

• Z39.88-2004 Matrix: This Constraint Language, which is defined in Appendix B, defines how
to construct a matrix that specifies how to describe a specific class of resources using a
string of ampersand-delimited KEV pairs. For an example of a matrix that defines a KEV
Metadata Format, see Section 12.3.2.

• XML Schema: The W3C XML Schema definition language is endorsed by the World Wide
Web Consortium (W3C) to describe the structure and constrain the contents of XML 1.0
documents [3] [4]. For an example of the use of an XML Schema that defines an XML
Metadata Format, see Section 16.3.2.

7.3 Constraint Definitions

A Constraint Definition specifies syntactic and semantic constraints for the Representation of a given
class of resources. The constraints are specified using a Constraint Language.

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 21

This Standard uses two types of Constraint Definitions. Section 8.2 uses one type to constrain
Representations of ContextObjects, leading to ContextObject Formats. Section 9.2 uses another type
to constrain Representations of Entities of ContextObjects, leading to Metadata Formats, which
enable By-Value and By-Reference Metadata Descriptors.

Section 12.3 shows how to use the Z39.88-2004 Matrix Constraint Language to define constraints on
KEV Serializations. Tables Table 13and Table 14 show excerpts of Constraint Definitions of,
respectively, the KEV ContextObject Format and the KEV Metadata Format for items of the type
“book”.

Section 16.3 shows how to use the XML Schema Constraint Language to define constraints on XML
Serializations. Tables Table 18 and Table 19 show XML Schema Constraint Definitions of,
respectively, the XML ContextObject Format and the XML Metadata Format for items of the type
“journal”.

8 Representing ContextObjects

This Section defines two core components of the OpenURL Framework that are essential for the
Representation of ContextObjects: Character Encodings and ContextObject Formats.

8.1 Character Encodings [Registry]

For the Representation of ContextObjects, this Standard supports the use of a variety of Character
Repertoires and Encoding Forms as defined in Character Encoding Model [13].

A Character Encoding is a combination of a Character Repertoire and an Encoding Form.

All Character Encodings used in Applications must be taken from the Internet Assigned Naming
Authority (IANA) List of Registered Character Sets [7]. When a ContextObject Representation
declares that it is using a specific Character Encoding, it must follow the specification of the
corresponding IANA character set, as shown in the IANA list.

All Character Encodings must be registered before use in an Application.

Communities may use Character Encodings that are already in the Registry, or they may register
additional Character Encodings from the IANA list as needed.

Upon registration, a Character Encoding is assigned a Registry Identifier, formed by concatenating
three character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• enc:, a character string that uniquely identifies a core component of the OpenURL
Framework, which for Character Encodings must be enc:

• a character string that identifies the IANA character set [7]. Use the character string in the
official IANA definition that is tagged as

− "preferred MIME name", if available, or

− “Name”, if a preferred MIME name is not available.

Registry Identifiers of Character Encodings are typically used to declare the Character Encoding of a
ContextObject Representation. They are also used to support Registry management and to identify
Character Encodings in Community Profiles.

ANSI/NISO Z39.88-2004 PART 1

22 © 2005 NISO

Table 5: Registry Identifiers for Character Encodings

“info” URI
Namespace

Core
Component

IANA preferred
MIME name

IANA Name Registry Identifier

info:ofi/ enc: UTF-8 info:ofi/enc:UTF-8

info:ofi/ enc: Big5 Big5 info:ofi/enc:Big5

info:ofi/ enc: ISO-8859-1 ISO_8859-1:1987 info:ofi/enc:ISO-8859-1

Table 5 shows how to construct Registry Identifiers for the Character Encodings in the initial Registry:
ISO 8859-1 (ISO Latin 1), UTF-8 encoded Unicode, and Big5.

Example 7: Identification of a Character Encoding

ctx_enc = info:ofi/enc:UTF-8

Example 7 shows how a KEV ContextObject Representation specifies its Character Encoding by
assigning the Registry Identifier of the Character Encoding to the ctx_enc administrative key.

8.2 ContextObject Formats [Registry]

A ContextObject Format is a specification of concrete selections for all three items of the Format triple
{ Serialization, Constraint Language, Constraint Definition } for the purpose of representing
ContextObjects.

ContextObject Formats must not relax the constraints expressed in Table 1, but they may restrict
them:

• A ContextObject Format may limit the number of occurrences of ServiceType and Resolver
Entities.

• A ContextObject Format may limit the number of Descriptors that may be used to describe
each Entity.

• A ContextObject Format must not allow multiple Referent, ReferringEntity, Requester, or
Referrer Entities.

Any additional constraints must be specified in ContextObject Format definitions.

The basic data model for ContextObjects does not constrain the number of ContextObjects that may
be represented in an instance document that conforms to the ContextObject Format. ContextObject
Formats may constrain this number, and each Community Profile provides this information. (See
Sections 11, 15, and 19.)

It is recommended that a ContextObject Format provide the capability to convey administrative
information. The Registry may require providing this capability.

ContextObject Formats must be registered before use in an Application.

Communities may use ContextObject Formats that are already in the Registry, or they may register
additional ContextObject Formats as needed.

Upon registration, a ContextObject Format is assigned a Registry Identifier, formed by concatenating
three character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 23

• fmt:, a character string used to introduce Format-related Identifiers in the info:ofi/
Namespace

• a character string that identifies the Format triple for the ContextObject Format, consisting of:

− a character string that identifies the registered Serialization followed by a colon character
(‘:’)

− a character string that identifies the registered Constraint Language followed by a colon
character (‘:’)

− a character string that is assigned on registration and identifies the Constraint Definition.
It must start with the reserved prefix ctx to indicate that this is a ContextObject Format.

Registry Identifiers of ContextObject Formats are used in ContextObject Representations to specify
the Format by which the ContextObjects are represented. Registry Identifiers of ContextObject
Formats are also used to support Registry management and to identify ContextObject Formats in
Community Profiles.

Table 6: Registry Identifiers for ContextObject Formats

“info” URI
Namespace

Format-
related

Serialization Constraint
Language

Constraint
Definition

Registry Identifier

info:ofi/ fmt: kev: mtx: ctx info:ofi/fmt:kev:mtx:ctx

info:ofi/ fmt: xml: xsd: ctx info:ofi/fmt:xml:xsd:ctx

Table 6 illustrates the construction of Registry Identifiers for the two ContextObject Formats in the
initial Registry (described in Sections 12 and 16, respectively):

• The KEV ContextObject Format represented by the triple:
{ KEV, Z39.88-2004 Matrix, matrix of Table 13 }.

− The KEV ContextObject Format represents a ContextObject as a string of ampersand-
delimited KEV pairs, constrained using the Z39.88-2004 Matrix of Table 13.

− The KEV ContextObject Format restricts the number of ServiceType and Resolver
Entities to “≤1” and the number of Referrer Entities to exactly one. (See Table 15.)

− The KEV ContextObject Format includes the capability to convey administrative
information; see Table 17.

• The XML ContextObject Format represented by the triple:
{ XML, XML Schema, XML Schema of Section 16.2 }.

− The XML ContextObject Format represents one or more ContextObjects as an XML
Document, constrained using the XML Schema Constraint Language by means of the
XML Schema of Section 16.2.

− The XML ContextObject Format restricts the number of Referrer Entities to exactly one;
see Table 20.

− The XML ContextObject Format includes the capability to convey administrative
information; see Table 22.

− To support new applications, communities could introduce new XML-based
ContextObject Formats constrained by other syntactic constraint languages (DTD or
RELAX NG, for example) or semantic constraint languages (RDFS or OWL, for example).

ANSI/NISO Z39.88-2004 PART 1

24 © 2005 NISO

Example 8: Identification of a ContextObject Format

url_ctx_fmt = info:ofi/fmt:kev:mtx:ctx

Example 8 shows how a Registry Identifier of a ContextObject Format is used as the value of an
url_ctx_fmt key of an OpenURL Transport (see Part 4) to specify the Format of the transported
ContextObject Representation.

9 Representing Entities

This Section defines core components of the OpenURL Framework that are essential for the
representing Entities of ContextObjects:

• Namespaces for describing Entities with Identifier Descriptors

• Metadata Formats for describing Entities with By-Value and/or By-Reference Metadata
Descriptors

Entities may also be described by Private Data Descriptors. Because the nature of Private Data is not
specified by this Standard, there is no infrastructure in the OpenURL Framework to support Private
Data: none of the core components explicitly deal with Private Data, and Community Profiles do not
contain any information to facilitate the use of Private Data in Applications.

The Metadata Format used to represent an Entity must be compatible with the ContextObject Format
used to represent the ContextObject that contains the Entity. In most cases, the Metadata Format and
the ContextObject Format must be based on the same Serialization and Constraint Language. This
requirement is waived only if the Entity is described with a By-Reference Metadata Descriptor and the
Metadata Format is registered.

In most cases, a Character Encoding used for the Representation of an Entity and the Character
Encoding used for the Representation of the ContextObject that contains the Entity must be identical.
This requirement is waived only for By-Reference Metadata, provided that it contains a standards-
based declaration of its Character Encoding. In this case, the Character Encoding of the By-
Reference Metadata may differ from that of the ContextObject. However, this is strongly discouraged,
because it is not guaranteed that Resolvers will be able to process in a meaningful way the Character
Encoding specified in the By-Reference Metadata.

9.1 Namespaces [Registry]

Identifier Descriptors describe Entities with Identifiers. This Standard provides for the use of
Identifiers from a wide variety of namespaces. This Section defines which Identifiers are valid
according to this Standard.

All Identifiers used in OpenURL Framework Applications must be Uniform Resource Identifiers
(URIs) or Uniform Resource Names (URNs). URI schemes and URN namespaces are maintained by
the Internet Assigned Numbers Authority (IANA) and are available at:

• IANA URI Schemes Registry [8]: <http://www.iana.org/assignments/uri-schemes>

• IANA URN Namespace Identifiers Registry [9]:
<http://www.iana.org/assignments/urn-namespaces>

URI schemes or URN namespaces must be registered before use in an Application.

Registered URI schemes and URN namespaces are called Namespaces. This Standard does not
support the use of unregistered Namespaces. Only Identifiers that belong to a registered Namespace
may be used in Identifier Descriptors of Entities.

http://www.iana.org/assignments/uri-schemes
http://www.iana.org/assignments/urn-namespaces

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 25

Communities may use Namespaces that are already in the Registry, or they may register additional
Namespaces as needed.

Upon registration, a Namespace is assigned a Registry Identifier, formed by concatenating three
character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• nam:, a character string that uniquely identifies a core component of the OpenURL
Framework, which for Namespaces must be nam:

• a character string indicating the actual URI scheme or URN namespace:

− For URI schemes, use the string listed under the Column “Scheme Name” of the IANA
URI Schemes registry [8].

− For URN namespaces, use the character string urn: followed by the string listed under
the Column “Registered Formal URN Namespaces” of the IANA URN Namespaces
registry [9].

Registry Identifiers of Namespaces are used primarily to support Registry management and to
identify Namespaces in Community Profiles. In typical use, Registry Identifiers of Namespaces do not
show up in Representations of ContextObjects or their Entities.

Table 7: Registry Identifiers for Namespaces

“info” URI
Namespace

Core
Component

URI Scheme or
URN Namespace

Registry Identifier Namespace

info:ofi/ nam: http info:ofi/nam:http http URI Scheme
(RFC 2616 [14)

info:ofi/ nam: mailto info:ofi/nam:mailto mailto URI Scheme
(RFC 2368 [15])

info:ofi/ nam: urn:ISSN info:ofi/nam:urn:ISSN ISSN URN
Namespace (RFC
3044 [16])

Table 7 illustrates the construction of Registry Identifiers for three Namespaces. For a list of all
Namespaces in the initial Registry, see Sections C.5 and D.5.

Example 9: Identification of Entities using Identifiers from Namespaces

rft_id = urn:ISBN:0262011808
rft_id = info:pmid/9036860
req_id = mailto:jane.doe@caltech.edu
rfr_id = http://www.sciencedirect.com

Example 9 shows Identifiers used as Descriptors of two Referents, a Requester, and a Referrer. The
Identifier mailto:jane.doe@caltech.edu belongs to the Namespace for the “mailto” URI Scheme,
which was assigned the Registry Identifier info:ofi/nam:mailto upon registration.

9.2 Metadata Formats [Registry]

A Metadata Format is a specification of concrete selections for all three items of the Format triple
{ Serialization, Constraint Language, Constraint Definition } for the purpose of representing an Entity.

ANSI/NISO Z39.88-2004 PART 1

26 © 2005 NISO

Metadata Formats define Formats that can be used for the Representation of Entities of
ContextObjects by means of By-Value and/or By-Reference Metadata Descriptors.

Metadata Formats used in Applications should be registered. This Standard recommends the use of
registered Metadata Formats when feasible, but it supports the use of unregistered Metadata Formats
that meet the requirements described below.

A Metadata Format used to represent an Entity must be compatible with the ContextObject Format
used to represent the ContextObject that contains the Entity. In most cases, the Metadata Format and
the ContextObject Format must be based on the same Serialization and Constraint Language. This
requirement is waived only if the Entity is described with a By-Reference Metadata Descriptor and the
underlying Metadata Format is registered.

Communities may use Metadata Formats that are already in the Registry, they may register
additional Metadata Formats, or they may use unregistered Metadata Formats.

Upon registration, a registered Metadata Format is assigned a Registry Identifier, formed by
concatenating three character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• fmt:, a character string used to introduce Format-related Identifiers in the info:ofi/
Namespace

• a character string that identifies the Format triple. It consists of:

− a character string that identifies the registered Serialization followed by a colon character
(‘:’)

− a character string that identifies the registered Constraint Language followed by a colon
character (‘:’)

− a character string that is assigned on registration and associates a name with the
Metadata Format. This name must not start with the prefix ctx, which is reserved for
ContextObject Formats. The name of the Metadata Format may be non-unique in the
Registry but the Registry Identifier must be unique to the Registry. No relationship is
assumed between Metadata Formats with the same or similar names.

Registry Identifiers of registered Metadata Formats are used in ContextObject Representations to
specify the Format by which the Entities in the ContextObjects are represented. Registry Identifiers of
Metadata Formats are also used to support Registry management and to identify registered Metadata
Formats in Community Profiles.

An unregistered Metadata Format must be identified by means of a URI. This URI

• must not reside under the info:ofi/ namespace of the “info” URI scheme; and

• must be network-dereferenceable and point to a document that contains the constraint
definition of the Metadata Format.

Identification of unregistered Metadata Formats is used in ContextObject Representations to specify
the Format by which the Entities in the ContextObjects are represented.

Table 8: Registry Identifiers for Registered Metadata Formats

“info” URI
Namespace

Core
Component

Serialization Constraint
Language

Constraint
Definition

Registry Identifier

info:ofi/ fmt: kev: mtx: book info:ofi/fmt:kev:mtx:book

info:ofi/ fmt: xml: xsd: patent info:ofi/fmt:xml:xsd:patent

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 27

Table 8 illustrates the construction of Registry Identifiers for two registered Metadata Formats:

• KEV Metadata Format for items of the type “book”, specified by the Format triple { KEV,
Z39.88-2004 Matrix, book }

• XML Metadata Format for items of the type “patent”, specified by the Format triple {XML, XSD,
patent }

(For a list of all Metadata Formats in the initial Registry, see Table 26 of Appendix C for KEV
Metadata Formats and Table 28 of Appendix D for XML Metadata Formats.)

Example 10: Identification of Unregistered Metadata Formats

rft_val_fmt = http://www.example.net/mtx/cars.html

Example 10 shows the identification of an unregistered Metadata Format for By-Value Metadata of a
Referent in a KEV ContextObject Representation. The file cars.html is a Constraint Definition.

10 Transporting ContextObject Representations: Transports
[Registry]

A Transport is a method by which a ContextObject Representation may be transported over a
network. A Transport is the combination of a network protocol and a method by which this network
protocol transports a ContextObject Representation.

Transports must be registered before use in an Application.

Communities may use Transports that are already in the Registry, or they may register additional
Transports as needed.

Upon registration, a Transport is assigned a Registry Identifier, formed by concatenating four
character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• tsp:, a character string that uniquely identifies a core component of the OpenURL Framework,
which for Transports must be tsp:

• a character string that is assigned on registration and identifies the network protocol used by
the Transport followed by a colon character (‘:’)

• a character string that is assigned on registration and identifies the actual Transport.

Registry Identifiers of Transports are used primarily to support Registry management and to identify
Transports in Community Profiles. In typical use, Registry Identifiers of Transports do not show up in
Representations of ContextObjects or their Entities.

Table 9: Registry Identifiers for Transports

“info” URI
Namespace

Core
Component

Network
Protocol

Transport Registry Identifier

info:ofi/ tsp: http: openurl-by-val info:ofi/tsp:http:openurl-by-val

info:ofi/ tsp: https: openurl-by-ref info:ofi/tsp:https:openurl-by-ref

info:ofi/ tsp: http: openurl-inline info:ofi/tsp:http:openurl-inline

ANSI/NISO Z39.88-2004 PART 1

28 © 2005 NISO

Table 9 illustrates the construction of Registry Identifiers for three Transports. (See Sections 20
through 22 for all six Transports that are in the initial Registry.)

11 Defining Applications: Community Profiles [Registry]

When communities create a new OpenURL Framework Application, they must make selections for
each of the core components introduced so far. They must list these selections in a Community
Profile that specifies the core characteristics of the Application.

A Community Profile defines the core characteristics of an Application as a list of Registry entries.
This list contains Registry Identifiers for:

• One, and only one, ContextObject Format upon which the Application is built. Because of the
nature of ContextObject Formats, this implies a selection of:

− One Serialization

− One Constraint Language

− One or more Character Encodings

− A set of constraints on the type and number of Entities that may be described in a
ContextObject

− A set of constraints on the type and number of Descriptors that may be used for the
description of Entities of a ContextObject

− A constraint on the number of ContextObjects that may be represented in an instance
document that conforms to the ContextObject Format

• Zero or more registered Metadata Formats that may be used to describe Entities with By-
Value and/or By-Reference Metadata Descriptors. Because of the nature of registered
Metadata Formats, this choice implies a selection of:

− For registered Metadata Formats used in By-Value Metadata Descriptors:

� One Serialization, which must be the Serialization used by the ContextObject Format

� One Constraint Language, which must the Constraint Language used by the
ContextObject Format

� One or more Character Encodings, which must be the same as those used by the
ContextObject Format

− For registered Metadata Formats used in By-Reference Metadata Descriptors:

� One or more Serializations, which may be the same as the Serialization used by the
ContextObject Format

� One or more Constraint Languages, which may be the same as the Constraint
Language used by the ContextObject Format

� One or more Character Encodings, which should be the same as those used by the
ContextObject Format

• Zero or more Namespaces that may be used to describe Entities with an Identifier Descriptor

• One or more Transports that specify how ContextObject Representations in the chosen
ContextObject Format may be transported

PART 1 ANSI/NISO Z39.88-2004

© 2005 NISO 29

A Community Profile must be expressed with an XML Document that conforms to the XML Schema
provided in the Registry at <http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:pro>, where it is
registered as a Format. The Dublin Core metadata [18] of this Registry entry are:

info:ofi/fmt:xml:xsd:pro
dc:title XML Format to represent Community Profiles
dc:creator NISO Committee AX, OpenURL Standard Committee
dc:identifier info:ofi/fmt:xml:xsd:ctx
dc:identifier http://www.openurl.info/registry/docs/xsd/info:ofi/fmt:xml:xsd:pro

In addition to the mandatory expression of a Community Profile as an XML Document, it is strongly
recommended that communities create a human readable description of their Application and its
corresponding Community Profile for the benefit of implementers.

This Standard does not prescribe or limit Resolver responses to service requests. However, a
Resolver that conforms with a Community Profile should be able to process requests that are valid
according to that Community Profile. A Resolver that conforms with a Community Profile may ignore
requests that contain items not specified in the Community Profile.

Community Profiles must be registered before use in an Application.

Communities may use Community Profiles already in the Registry, or they may register additional
Community Profiles as needed.

Upon registration, a Community Profile is assigned a Registry Identifier, formed by concatenating
three character strings:

• info:ofi/, which represents the namespace under the info scheme reserved for Registry
Identifiers

• pro:, a character string that uniquely identifies a core component of the OpenURL Framework,
which for Community Profiles must be pro:

• a character string that is assigned on registration and identifies the Community Profile.

Registry Identifiers of Community Profiles are used primarily to support Registry management and to
identify Community Profiles. In typical use, Registry Identifiers of Community Profiles do not show up
in ContextObject Representations.

Table 10: Registry Identifiers for Community Profiles

“info” URI Namespace Core Component Name Registry Identifier

info:ofi/ pro: sap1 info:ofi/pro:sap1

info:ofi/ pro: sap2 info:ofi/pro:sap2

Table 10 illustrates the construction of Registry Identifiers for the two Community Profiles in the initial
Registry. (See Sections 15 and 19.)

Table 11 excerpts the Level 1 San Antonio Community Profile (SAP1), available in the Registry at
<http://www.openurl.info/registry/docs/pro/info:ofi/pro:sap1>. This excerpt defines some cardinality
constraints on the KEV ContextObject Format, upon which SAP1 is built. (See Section 13.1.)

http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:pro
http://www.openurl.info/registry/docs/pro/info:ofi/pro:sap1

ANSI/NISO Z39.88-2004 PART 1

30 © 2005 NISO

Table 11: SAP1 Community Profile, Excerpt

<context-object-format>
 <context-object minOccurs="1" maxOccurs="1">
 <referent minOccurs="1" maxOccurs="1">
 <identifier minOccurs="0" maxOccurs="unbounded"/>
 <by-value-metadata minOccurs="0" maxOccurs="1"/>
 <by-reference-metadata minOccurs="0" maxOccurs="1"/>
 <private-data minOccurs="0" maxOccurs="1"/>
 </referent>
 <referring-entity minOccurs="0" maxOccurs="1">
 <identifier minOccurs="0" maxOccurs="unbounded"/>
 <by-value-metadata minOccurs="0" maxOccurs="1"/>
 <by-reference-metadata minOccurs="0" maxOccurs="1"/>
 <private-data minOccurs="0" maxOccurs="1"/>
 </referring-entity>
 <requester minOccurs="0" maxOccurs="1">
 <identifier minOccurs="0" maxOccurs="unbounded"/>
 <by-value-metadata minOccurs="0" maxOccurs="1"/>
 <by-reference-metadata minOccurs="0" maxOccurs="1"/>
 <private-data minOccurs="0" maxOccurs="1"/>
 </requester>
 <service-type minOccurs="0" maxOccurs="1">
 <identifier minOccurs="0" maxOccurs="unbounded"/>
 <by-value-metadata minOccurs="0" maxOccurs="1"/>
 <by-reference-metadata minOccurs="0" maxOccurs="1"/>
 <private-data minOccurs="0" maxOccurs="1"/>
 </service-type>
 <resolver minOccurs="0" maxOccurs="1">
 <identifier minOccurs="0" maxOccurs="unbounded"/>
 <by-value-metadata minOccurs="0" maxOccurs="1"/>
 <by-reference-metadata minOccurs="0" maxOccurs="1"/>
 <private-data minOccurs="0" maxOccurs="1"/>
 </resolver>
 <referrer minOccurs="0" maxOccurs="1">
 <identifier minOccurs="0" maxOccurs="unbounded"/>
 <by-value-metadata minOccurs="0" maxOccurs="1"/>
 <by-reference-metadata minOccurs="0" maxOccurs="1"/>
 <private-data minOccurs="0" maxOccurs="1"/>
 </referrer>
 </context-object>
</context-object-format>

 ANSI/NISO Z39.88-2004

© 2005 NISO 31

The OpenURL Framework for
Context-Sensitive Services
Part 2: The KEV ContextObject Format

Part 1 (Sections 5 through 11) defines the core components of the OpenURL Framework:
Namespaces, Character Encodings, Serializations, Constraint Languages, ContextObject Formats,
Metadata Formats, Transports, and Community Profiles.

Parts 2, 3, and 4 (Sections 12 through 22) define instances of these core components that illustrate
the abstract concepts of Part 1. These instances form the initial content of the Registry. Each
instance is described, given a Registry Identifier, and entered into the Registry at
<http://www.openurl.info/registry/>. The initial Registry launches two Applications of the OpenURL
Framework Standard intended for the scholarly-information community. The first Application provides
a migration path from OpenURL 0.1 to the OpenURL Framework Standard. The second Application
provides a path for future growth by harnessing the full expressive power of XML.

Part 2 defines a ContextObject Format inspired by the query string of the HTTP(S) GET request as
specified in OpenURL 0.1. Part 3 defines a ContextObject Format based on XML. Part 4 defines six
Transports. Four of these Transports are generic and may be used with any ContextObject Format.
Two of the Transports are developed specifically for the ContextObject Format defined in Part 2 to
provide a migration path from OpenURL 0.1 to this Standard.

Part 2 (Sections 12 through 15) defines a particular instance of a ContextObject Format inspired by
the query string of the HTTP(S) GET request as specified in OpenURL 0.1. The Key/Encoded-Value
ContextObject Format defines how to represent a ContextObject as a string of ampersand-delimited
Key/Encoded-Value pairs. In the remainder of this Standard, the term Key/Encoded-Value will be
abbreviated to KEV.

Section 12 describes and registers the following instances of core components necessary to define
the KEV ContextObject Format: the KEV Serialization, the Z39.88-2004 Matrix Constraint Language,
and Constraint Definitions that define the KEV ContextObject Format and illustrate KEV Metadata
Formats. Sections 13 and 14 apply the KEV ContextObject Format to obtain KEV ContextObject
Representations.

Using the KEV ContextObject Format, a ContextObject is represented as a URL-encoded form ready
for transport by HTTP(S) GET and HTTP(S) POST. The Inline OpenURL Transports defined in
Section 22 transport a KEV ContextObject Representation as the query string of an HTTP(S) GET
request or as the message body of an HTTP(S) POST. These Inline Transports, the generic
Transports of Sections 20 and 21, and the KEV ContextObject Format form the basis for an easy
migration path from OpenURL 0.1 to this Standard. This migration path is formalized in an Application
defined by the Level 1 San Antonio Community Profile; see Section 15 and Appendix C.

http://www.openurl.info/registry/

ANSI/NISO Z39.88-2004 PART 2

32 © 2005 NISO

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 33

12 The KEV ContextObject Format

This Section introduces Format triples of the KEV ContextObject Format and of the KEV Metadata
Formats necessary to describe Entities. These Format triples consist of instances of core
components, which are identified, described, and entered into the Registry (see Section 6) at
<http://www.openurl.info/registry>. The Format triples consist of:

• The KEV Serialization (Section 12.1)

• The Z39.88-2004 Matrix Constraint Language (Section 12.2)

• Constraint Definitions expressed in the Z39-88-2004 Matrix Constraint Language for the KEV
ContextObject Format (Sections 12.3.1 and 13) and for the KEV Metadata Formats (Sections
13 and 14).

While Sections 12, 13, and 14 introduce, describe, and illustrate these elements, the Registry is the
authoritative source for their complete specification.

12.1 The KEV Serialization

Registry Identifier info:ofi/fmt:kev

The KEV Serialization resembles the query component of an HTTP GET request. Often, HTTP GET
requests are constructed to transmit information from a user agent to a processing agent. The user
agent builds an HTTP URI query component from an HTML form data set on a GET method request
and appends this component to an HTTP URI with a question-mark character (‘?’) as a separator.
The processing agent residing at this HTTP URI interprets and processes the query component. The
syntax of the query component is a list of key/value pairs delimited by ampersand characters (‘&’),
such as:

key1=value1&key2=value2

The key/value pairs are delimited by an equals character (‘=’) and concatenated with an ampersand
character (‘&’). Keys may occur multiple times in order to associate multiple values with each key.
IETF RFC 2396 [6] reserves the following characters for special use within the query component:

‘;’, ‘/’, ‘?’, ‘:’, ‘@’, ‘&’, ‘=’, ‘+’, ‘$’, and ‘,’.

These characters must be escaped by URL-encoding.

The key/value syntax is also used on hyperlinks embedded in HTML documents to send parameters
to a processing agent. Similarly, on a request that uses the POST method, user agents use the same
syntax to include the form data set within an HTTP entity body.

Keys must be constructed from characters that remain invariant under URL-encoding (also known as
safe characters). Values may be constructed from both safe and unsafe characters and must be
URL-encoded. This explains the name Key/Encoded-Value or KEV for this Serialization.

To simplify the descriptions that follow, we include a leading ampersand character (‘&’) with each
KEV pair, as in &key=value. By doing this, the complete KEV Serialization is a simple concatenation
of KEV pairs.

http://www.openurl.info/registry

ANSI/NISO Z39.88-2004 PART 2

34 © 2005 NISO

12.2 The Z39.88-2004 Matrix Constraint Language

Registry Identifier info:ofi/fmt:kev:mtx

The Z39.88-2004 Matrix Constraint Language is used to specify constraints for descriptions of
resources expressed using the KEV Serialization. The Z39.88-2004 Matrix Constraint Language is
used to define the syntax and semantics of the KEV ContextObject Format and KEV Metadata
Formats.

The Z39.88-2004 Matrix document is expressed in XHTML using a table format to define keys and
data types of potential values for the keys. The complete XHTML underlying the construction of
Z39.88-2004 Matrices is available in Appendix B and in the Registry at
<http://www.openurl.info/registry/docs/html/mtx.html>.

Table 12: Structure of the Z39.88-2004 Matrix

Delim Key Equals Value Min Max Description
& [** Key **] = <[** Value **]> 0 1 [** Item definition **]
[** ... **] [** … **] [** … **] [** … **] [** … **] [** This is a comment row **]

Table 12 shows the structure of a Z39.88-2004 Matrix. It consists of the following columns:

• Delim: the ampersand character (‘&’) delimiter for rows containing syntax rules or the hash
character (‘#’) for comment rows

• Key: the key being defined

• Equals character (‘=’)

• Value: the data type for the value associated with the key

• Min: the minimum occurrence allowed for the key; an integer

• Max: the maximum occurrence allowed for the key; an integer or an asterisk character (‘*’) to
denote ‘unbounded’

• Description: a full name of the key, a semantic definition of the key, and any further
information

Each row of the Z39.88-2004 Matrix with an ampersand character (‘&’) in the first column describes
the construction of a valid KEV pair. Rows of the Z39.88-2004 Matrix that have a hash character (‘#’)
in the first column are comment rows and must be ignored.

One valid KEV pair is obtained by concatenating table entries from the first four columns of a Z39.88-
2004 Matrix row that begins with an ampersand character (‘&’). Several valid KEV pairs may be
concatenated to obtain a description of a resource compliant with a Z39.88-2004 Constraint
Definition. The order in which KEV pairs are concatenated is not important.

In comment rows, replace the character string “[** ... **]” with descriptive text. Descriptive text must
not occur in the Delim column. Usually, only the Description column contains descriptive text.

In the Key column of non-comment rows, the character string “[** Key **]” must be replaced with the
name of a valid key.

The Value column of a non-comment row of the Z39.88-2004 Matrix assigns a data type to the key,
and [** Value **] should be replaced with one of the following available data types:

• <data>: character string

• <id>: character string for an Identifier (Section 5.2.1)

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 35

• <fmt-id>: character string for a Format Identifier (Sections 8.2 and 9.2)

• <m-key>: character string for a metadata key (Section 14.2)

• <url>: character string for a URL [6]

• <date>: character string of the form [YYYY-MM-DD| YYYY-MM | YYYY], which represents a
date formatted according to the W3C DTF profile of ISO 8601 [12]

• <time>: character string of the form [YYYY-MM-DDThh:mm:ssTZD], which represents a
complete date plus hours, minutes, and seconds formatted according to the W3C DTF profile
of ISO 8601 [12]

In the Description column, [** Item definition **] should be replaced with descriptive text containing
the full name of the key, a semantic definition of the key, and any additional useful information.

12.3 Constraint Definitions in the KEV ContextObject Format

The main Constraint Definition associated with the KEV Serialization and the Z39.88-2004 Matrix
Constraint Language is the KEV ContextObject Format. This Format defines the Representation of a
ContextObject as a concatenation of KEV pairs of the form &key=value.

In addition, there are Constraint Definitions known as KEV Metadata Formats that define the
Representation of Entities of ContextObjects as a concatenation of KEV pairs. These
Representations may be used for both By-Value and/or By-Reference Metadata Descriptors.

In the Registry, a Constraint Definition for a Format expressed in the Z39.88-2004 Matrix Constraint
Language is described by the following metadata:

• dc:title: the title of the Format

• dc:creator: the name of the community that defined the Format

• dc:description: a brief description of the Format

• dc:identifier: a locator of the Z39.88-2004 Matrix that defines the Format

• dcterms:created: the date when the Format was created

• dcterms:modified: the date when the Format was modified

Z39.88-2004 Matrix definitions are primarily intended for human reading. To this end, the XHTML
Matrix has an associated style sheet that displays the first four rows of each column in bold type to
highlight the syntax embedded in the Matrix. However, machine reading is supported, and each cell
of the Matrix has an associated class attribute. The W3C XHTML validator button at the foot of the
page should be used to validate the XHTML Matrix.

A template for the Z39.88-2004 Matrix that may be used in the creation of KEV Metadata Formats is
available in Appendix B and in the Registry at <http://www.openurl.info/registry/docs/html/mtx.html>.

12.3.1 Z39.88-2004 Matrix Constraint Definition for the KEV ContextObject Format

Registry identifier: info:ofi/fmt:kev:mtx:ctx

The Z39.88-2004 Matrix that defines the KEV ContextObject Format is available at
<http://www.openurl.info/registry/docs/mtx/ info:ofi/fmt:kev:mtx:ctx>. Table 13 is an excerpt that
shows the administrative keys (names starting with ctx) and the Referent keys (names starting with
rft). Section 13.2 specifies all keys that may occur in a KEV ContextObject Representation.

ANSI/NISO Z39.88-2004 PART 2

36 © 2005 NISO

Table 13: Z39.88-2004 Matrix Constraint Definition of KEV ContextObject Format, Excerpt

Delim Key Equals Value Min Max Description

ctx_ 0 1
Administration. As Admin is an optional field in a
ContextObject, any of the keys with prefix ctx_ may be
present.

& ctx_ver = Z39.88-
2004 0 1 ContextObject version. This has a fixed value.

& ctx_enc = <data> 0 1

ContextObject encoding. The value for ctx_enc specifies
the character encoding used in the ContextObject.
Legitimate values are taken from the IANA list at
http://www.iana.org/assignments/character-sets. The
values to be used in the ContextObject are those listed
next to Name or⎯if available⎯the values with an
indication of 'preferred MIME name' in the IANA list. UTF-
8 is the default value, representing UTF-8 encoded
Unicode.

& ctx_id = <data> 0 1 ContextObject Identifier.
& ctx_tim = <time> 0 1 ContextObject timestamp. YYYY-MM-DD or YYYY-MM-

DDThh:mm:ssTZD

rft_ 1 1
Referent. As Referent is a mandatory Entity in a
ContextObject, at least one of the keys with prefix rft_
must be present

& rft_id = <id> 0 *
Referent Identifier. Multiple instances of rft_id do not
indicate multiple Referents, but rather multiple ways to
identify a single Referent

& rft_val_fmt = <fmt-
id> 0 1

Identifier of By-Value Metadata Format for a Referent.
Identifier of the Metadata Format used for the description
of the Referent through By-Value Metadata

rft_val = 0 0 Reserved for future use

& rft.<m-
key> = <data> 0 *

By-Value Metadata key for a Referent. The <m-key> is a
key defined in the KEV Metadata Format specified by the
value of the rft_val_fmt key, which must be present. Use
of the rft. prefix is mandatory.

& rft_ref_fmt = <fmt-
id> 0 1 By-Reference Metadata Format for a Referent. The

rft_ref key must also be present.

& rft_ref = <url> 0 1
Location of By-Reference Metadata for a Referent. The
rft_ref_fmt key must also be present. The Resolver
should retrieve the metadata from the specified location.

& rft_dat = <data> 0 1 Referent Private Data

12.3.2 Z39.88-2004 Matrix Constraint Definitions for KEV Metadata Formats

The Z39.88-2004 Matrix Constraint Language is also used to define KEV Metadata Formats. Table
26 in Appendix C contains the list of KEV Metadata Formats that are in the initial Registry. For each
of these KEV Metadata Formats, the Registry at <http://www.openurl.info/registry> contains a
complete and authoritative Constraint Definition.

Table 14 is an excerpt of a Constraint Definition to describe a class of Entities of the type “book”. The
complete Constraint Definition is available at
<http://www.openurl.info/registry/docs/mtx/info:ofi/fmt:kev:mtx:book>.

http://www.iana.org/assignments/character-sets
http://www.openurl.info/registry/docs/mtx/info:ofi/fmt:kev:mtx:book

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 37

Keys specified in Z39.88-2004 Matrix Constraint Definitions that define KEV Metadata Formats must
consist of alphanumeric characters only. They must not contain underscore characters (‘_’).

Table 14: Z39.88-2004 Matrix Constraint Definition of KEV Metadata Format for “book”, Excerpt

Delim Key Equals Value Min Max Description

& aulast = <data> 0 1
First author's family name. This may be more than one word.
In many citations, the author's family name is recorded first
and is followed by a comma, i.e. Smith, Fred James is
recorded as aulast=smith.

& aufirst = <data> 0 1
First author's given name or names or initials. This data
element may contain multiple words and punctuation, i.e.
"Fred F", "Fred James".

& auinit = <data> 0 1 First author's first and middle initials.
& auinit1 = <data> 0 1 First author's first initial.
& auinitm = <data> 0 1 First author's middle initial.

& ausuffix = <data> 0 1
First author's name suffix. Qualifiers on an author's name such
as "Jr." or "III" are entered here. For example, Smith, Fred Jr.
is recorded as ausuffix=jr.

& au = <data> 0 * This data element contains the full name of a single author;
"Smith, Fred M" or "Harry S. Truman", for example.

& aucorp = <data> 0 1 Organization or corporation that is the author or creator of the
book; "Mellon Foundation", for example.

& btitle = <data> 0 1
The title of the book. This can also be expressed as title, for
compatibility with version 0.1; "moby dick or the white whale",
for example.

& atitle = <data> 0 1 Chapter title. Chapter title is included if it is a distinct title; "The
Push Westward.", for example.

& title = <data> 0 1 Book title. Provided for compatibility with version 0.1. Prefer
btitle.

13 KEV ContextObject Representations

Registry Identifier info:ofi/fmt:kev:mtx:ctx

The KEV Format represents one, and only one, ContextObject as a string of ampersand-delimited
pairs, each pair consisting of a key and an associated value that must be URL-encoded.

The KEV ContextObject Format triple consists of:

• The KEV Serialization (Section 12.1), recorded in the Registry under
Registry Identifier info:ofi/fmt:kev

• The Z39.88-2004 Matrix Constraint Language (Section 12.2), recorded in the Registry under
Registry Identifier info:ofi/fmt:kev:mtx

• The Z39.88-2004 Matrix Constraint Definition (Section 12.3), recorded in the Registry under
Registry Identifier info:ofi/fmt:kev:mtx:ctx

Example 11 displays a KEV ContextObject Representation. The first part of the example is formatted
for readability, and the second part is the actual KEV ContextObject Representation with URL-
encoded values (see Section 13.4). This example includes administrative keys (beginning with ctx),

ANSI/NISO Z39.88-2004 PART 2

38 © 2005 NISO

two Identifier Descriptors to describe the Referent (beginning with rft), Identifier Descriptors for the
ReferringEntity, Requester, and Referrer (rfe_id, req_id, and rfr_id, respectively). (Example 13 will
show the use of By-Value Metadata in a KEV ContextObject Representation.)

Example 11: KEV ContextObject Representation

Formatted for readability:
 ctx_ver = Z39.88-2004
& ctx_enc = info:ofi/enc:UTF-8
& ctx_id = 456
& ctx_tim = 2002-03-20T08:55:12Z
& rft_id = info:doi/10.1126/science.275.5304.1320
& rft_id = info:pmid/9036860
& rfe_id = info:doi/10.1006/mthe.2000.0239
& req_id = mailto:jane.doe@caltech.edu
& rfr_id = info:sid/elsevier.com:ScienceDirect

URL-encoded:
ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&ctx_id=456&ctx_tim=200
2-03-20T08%3A55%3A12Z&rft_id=info%3Adoi%2F10.1126%2Fscience.275.5304.1320&r
ft_id=info%3Apmid%2F9036860&rfe_id=info%3Adoi%2F10.1006%2Fmthe.2000.0239&re
q_id=mailto%3Ajane.doe%40caltech.edu&rfr_id=info%3Asid%2Felsevier.com%3ASci
enceDirect

13.1 Cardinality Constraints on the KEV ContextObject Format

The KEV ContextObject Format restricts the number of Entities that may be present in each
ContextObject, the number of Descriptors that may be used to describe Entities, and the number of
ContextObjects that may be bundled in a single KEV Representation. These constraints are specified
and summarized in Table 15 (compare this with the fundamental restrictions of Table 1).

Table 15: KEV ContextObject Format – Cardinality Constraints

Entity Number Descriptor

 Identifier By-Value Metadata By-Reference
Metadata

Private
Data

Referent 1 ≥ 0 ≤ 1 ≤ 1 ≤ 1

ReferringEntity ≤ 1 ≥ 0 ≤ 1 ≤ 1 ≤ 1

Requester ≤ 1 ≥ 0 ≤ 1 ≤ 1 ≤ 1

ServiceType ≤ 1 ≥ 0 ≤ 1 ≤ 1 ≤ 1

Resolver ≤ 1 ≥ 0 ≤ 1 ≤ 1 ≤ 1

Referrer ≤ 1 ≥ 0 ≤ 1 ≤ 1 ≤ 1

ContextObjects 1 N/A N/A N/A N/A

13.2 Keys in the KEV ContextObject Format

The rules for the creation of KEV pairs are:

• The first character of a key must be alphanumeric. The other characters of keys must be
alphanumeric, the underscore character (‘_’), or the dot character (‘.’).

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 39

• A key must be separated from its associated value by an equals character (‘=’).

• Values must be URL-encoded (see Section 14.4).

• The default Character Encoding for values is UTF-8 encoded Unicode, but it is possible to
declare the use of other Character Encodings (see Section 14.3).

• KEV pairs must be concatenated using the ampersand character (‘&’) to form a single string.

There are five types of keys in the KEV ContextObject Format:

• Keys to identify Entity Descriptors

• Keys to identify Metadata Formats used for By-Value Metadata Descriptors

• Keys to identify Metadata Formats used for By-Reference Metadata Descriptors

• Keys to specify administrative information about the ContextObject

• Metadata keys of a KEV Metadata Format

Sections 13.2.1 through 13.2.4 examine the first four types of keys. Section 14.2 examines metadata
keys of KEV Metadata Formats.

13.2.1 Keys for Entity Descriptors

Keys of Entity Descriptors must contain at least one underscore character (‘_’). As shown in Table
16, they are a concatenation of:

• an abbreviated form of the Entity name (The column under the heading Entities lists the full
name of each Entity together with its abbreviated form.)

• an underscore character (‘_’)

• an abbreviated form of the Descriptor name (The row under the heading Descriptors lists the
full name of each Descriptor and its abbreviated form.)

For example, the key rft_id indicates a Referent (rft) described by an Identifier (id).
Table 16: KEV ContextObject Format – Keys for Entity Descriptors

Entities Descriptors

 Identifier
id

By-Value Metadata
val

By-Reference Metadata
ref

Private Data
dat

Referent
rft

rft_id rft_val_fmt
Metadata keys (13.2.2)

rft_ref_fmt
rft_ref

rft_dat

ReferringEntity
rfe

rfe_id rfe_val_fmt
Metadata keys (13.2.2)

rfe_ref_fmt
rfe_ref

rfe_dat

Requester
req

req_id req_val_fmt
Metadata keys (13.2.2)

req_ref_fmt
req_ref

req_dat

ServiceType
svc

svc_id svc_val_fmt
Metadata keys (13.2.2)

svc_ref_fmt
svc_ref

svc_dat

Resolver
res

res_id res_val_fmt
Metadata keys (13.2.2)

res_ref_fmt
res_ref

res_dat

Referrer
rfr

rfr_id rfr_val_fmt
Metadata keys (13.2.2)

rfr_ref_fmt
rfr_ref

rfr_dat

ANSI/NISO Z39.88-2004 PART 2

40 © 2005 NISO

13.2.2 Keys for By-Value Metadata Descriptors

Metadata keys must consist of alphanumeric characters only. Metadata keys must not contain
underscore characters (‘_’).

When used in By-Value Metadata, metadata keys must be preceded by an Entity prefix (the
abbreviated Entity name listed in the first column of Table 16) followed the period character (‘.’).

For example, the prefix rfe. and metadata key au combined as rfe.au denotes the author of a
ReferringEntity, while rft.au would refer to the author of the Referent.

13.2.3 Keys for By-Reference Metadata Descriptors

When used in By-Reference Metadata, metadata keys must not be preceded by any prefix.

It is anticipated that By-Reference Metadata are constructed well before the ContextObject is formed
(presumably as part of a database). At that time, the item described by this metadata is not yet a
particular Entity: it could be a Referent in one ContextObject and a ReferringEntity in another
ContextObject.

13.2.4 Keys for Administrative Data

Keys for administrative data about the ContextObject are composed of the prefix ctx for
ContextObject, the underscore character (‘_’), and an abbreviated suffix. Table 17 gives the keys and
their cardinality constraints.

Table 17: KEV ContextObject Format – Administration Key Prefix and Suffixes

Key Number Definition

ctx_ver ≤ 1 Version of OpenURL Framework Standard. Fixed value of Z39.88-2004

ctx_enc ≤ 1 Character Encoding, Registry Identifier of the form info:ofi/enc:_ (Section 13.3)

ctx_id ≤ 1 Identifier of ContextObject

ctx_tim ≤ 1 ISO 8601datetime specifying the time of creation of the ContextObject

Note: The ctx_id key may have limited use for KEV ContextObject Representations. It is included for
consistency with the XML ContextObject Format (see Part 3) and possibly other ContextObject
Formats. XML ContextObject Representations are more likely to be stored in databases, in which
case a ContextObject identifier might be helpful for fast retrieval.

13.3 Character Encoding in the KEV ContextObject Format

UTF-8 encoded Unicode is the default Character Encoding of the KEV ContextObject Format. The
use of a different Character Encoding must be specified in the ctx_enc KEV pair:

• The default value associated with the ctx_enc key is info:ofi/enc:UTF-8, the Registry
Identifier of UTF-8 encoded Unicode. This value specifies the use of Unicode as the character
set and UTF-8 as the character encoding of that character set throughout the KEV
ContextObject Representation. When the Character Encoding is UTF-8 encoded Unicode, the
ctx_enc KEV pair is optional.

• Values associated with the ctx_enc key must be Registry Identifiers of Character Encodings
taken from the Registry. Registered character sets must be from the Internet Assigned
Naming Authority (IANA) List of Registered Character Sets [7]. Upon registration, a unique
Registry Identifier of the form info:ofi/enc:name is assigned to the character set. In
info:ofi/enc:name, the character string name is taken from the IANA list, as defined in
Section 8.1.

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 41

The character set and character encoding for all characters used in a KEV ContextObject
Representation must follow the corresponding specification shown in the IANA list.

The Character Encodings that are initially registered are listed in Table 26 of Appendix C.

By-Reference Metadata must use Unicode as the character set and UTF-8 as the character
encoding, unless the By-Reference Metadata description explicitly declares otherwise.

13.4 URL-Encoding in the KEV ContextObject Format

Values of KEV pairs must be URL-encoded to ensure that the KEV ContextObject Representation is
ready to be transported over the HTTP(S) protocol. URL-encoding eliminates confusion that could
occur when special characters, such as equals character (‘=’) and ampersand character (‘&’), are
used within values of KEV pairs.

Rules for URL-encoding values are:

• The alphanumeric characters (letters and digits), the period character (‘.’), the hyphen
character (‘-’), the asterisk character (‘*’), and the underscore character (‘_’) remain the same.

• The space character (‘ ’) is converted into a plus sign (‘+’) or into the character string “%20”.

• For all other characters, each byte of the character is converted into a three-character string
“%XY” where “XY” is the two-digit hexadecimal representation of the byte.

14 Entity Descriptors in the KEV ContextObject Format

A Descriptor specifies information about an Entity. There are four types of Descriptors that may be
used in the KEV ContextObject Format: Identifier, By-Value Metadata, By-Reference Metadata, and
Private Data.

14.1 Identifier Descriptors

An Identifier Descriptor specifies an Entity by means of a Uniform Resource Identifier (URI). This URI
may be associated with the Entity itself or with metadata for the Entity. As described in Section
13.2.1, keys to identify Identifier Descriptors in the KEV ContextObject Format consist of two parts
separated by an underscore character (‘_’). The first part identifies the Entity, and the second part is
the character string id, which specifies that the type of Descriptor is an Identifier Descriptor. For
example, the key rft_id denotes an Identifier Descriptor for a Referent.

Example 12: Identifier Descriptors in a KEV ContextObject Representation

Formatted for readability:
& rft_id = info:doi/10.1126/science.275.5304.1320
& rft_id = info:pmid/9036860
& rfe_id = info:doi/10.1006/mthe.2000.0239
& req_id = mailto:jane.doe@caltech.edu
& rfr_id = info:sid/elsevier.com:ScienceDirect
& res_id = http://links.caltech.edu/menu

URL-encoded:
&rft_id=info%3Adoi%2F10.1126%2Fscience.275.5304.1320&rft_id=info%3Apmid%2F
9036860&rfe_id=info%3Adoi%2F10.1006%2Fmthe.2000.0239&req_id=mailto%3Ajane.
doe%40caltech.edu&rfr_id=info%3Asid%2Felsevier.com%3AScienceDirect&res_id=
http%3A%2F%2Flinks.caltech.edu%2Fmenu

ANSI/NISO Z39.88-2004 PART 2

42 © 2005 NISO

Example 12 shows several Identifier Descriptors as they would occur in a KEV ContextObject
Representation.

14.2 By-Value and By-Reference Metadata Descriptors

A Metadata Format provides a concrete set of descriptive elements for the purpose of representing
an Entity. For compatibility, Metadata Formats and the ContextObject Format must be based on the
same Serialization and Constraint Language. This compatibility rule is waived for By-Reference
Metadata, provided the Metadata Format is registered (see Section 14.2.1).

Metadata Formats used in the OpenURL Framework may be registered. Unregistered Metadata
Formats must meet the requirements described in Section 9.2.

14.2.1 Rules Guiding By-Value and By-Reference Metadata Descriptors

The general rules for Metadata Formats are given in Section 9.2. This Section gives the rules for
creating By-Value Metadata and By-Reference Metadata in the KEV ContextObject Format. The KEV
ContextObject Format accommodates both registered and unregistered Metadata Formats.

• Registered Metadata Formats

− Registered Metadata Formats must be identified by means of the Registry Identifier of
the Metadata Format. The Registry maintains a one-to-one correspondence between the
definition of a Metadata Format and its Registry Identifier. The identification of the
Metadata Format must be provided as the value of a key with the suffix _fmt.

− The corresponding By-Value Metadata Descriptor must use the KEV Serialization and
must be valid according to a Z39.88-2004 Matrix. This Matrix must be in the Registry
and correspond uniquely with the Registry Identifier used to identify the Metadata Format.
The Registry Identifier of the Metadata Format must be of the form:
info:ofi/fmt:kev:mtx:format_name. Note that validity refers to the string of KEV pairs
after removal of the rft., rfe., rfr., req., res., and svc. prefixes. (See Section 13.2.2.)

− The corresponding By-Reference Metadata Descriptor must be an instance document
that conforms to the Metadata Format identified by the Registry Identifier. Because the
Metadata Format is registered, the By-Reference Metadata Descriptor may use any
registered Serialization, and the Metadata Format to which it conforms may use any
registered Constraint Language. The By-Reference Metadata Descriptor is not limited to
the KEV Serialization or the Z39.88-2004 Matrix Constraint Language.

• Unregistered Metadata Formats

− Unregistered Metadata Formats must be identified by means of a URL that specifies the
network location of the Z39.88-2004 Matrix that defines the KEV Metadata Format. The
identification of the Metadata Format must be provided as the value of a key with the
suffix _fmt. For example, a Metadata Format could be identified as:
http://www.example.net/x-service.html.

− The corresponding By-Value Metadata or By-Reference Metadata Descriptor must use
the KEV Serialization: it must be a string of ampersand-delimited KEV pairs that is valid
according to the Z39.88-2004 Matrix at the network location specified by the
aforementioned URL. Note that validity refers to the string of KEV pairs after removal of
the rft., rfe., rfr., req., res., and svc. prefixes. (See Section 13.2.2.)

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 43

14.2.2 By-Value Metadata Descriptors

A KEV By-Value Metadata Descriptor consists of:

• A KEV pair that specifies the URI of a Metadata Format as the value associated with a key of
the form *_val_fmt. (The * stands for the abbreviated form of an Entity name.) This Metadata
Format must be defined by means of a Z39.88-2004 Matrix Constraint Definition.

• A set of KEV pairs in which values are assigned to metadata keys. These keys must be valid
according to the specified Metadata Format.

Example 13: By-Value Metadata Descriptor in a KEV ContextObject Representation

Formatted for readability:
& rft_val_fmt = info:ofi/fmt:kev:mtx:journal
& rft.atitle = Isolation of a common receptor for coxsackie B
& rft.jtitle = Science
& rft.aulast = Bergelson
& rft.auinit = J
& rft.date = 1997
& rft.volume = 275
& rft.spage = 1320

URL-encoded:
&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.atitle=Isolation%2
0of%20a%20common%20receptor%20for%20coxsackie%20B&rft.jtitle=Science&rft.a
ulast=Bergelson&rft.auinit=J&rft.date=1997&rft.volume=275&rft.spage=1320

Example 13 shows a By-Value Metadata Descriptor for a Referent. In this example, the Referent is an
article in a journal.

• The KEV pair rft_val_fmt = info:ofi/fmt:kev:mtx:journal specifies the Metadata Format.
The key name indicates that this KEV pair specifies a By-Value Metadata Format used to
describe a Referent. The value identifies the Z39.88-2004 Matrix Constraint Definition of the
Metadata Format. Following the usage rules of the Registry (see Section 6.3), the Constraint
Definition is available at <http://openurl.info/registry/docs/info:ofi/fmt:kev:mtx:journal>.

• KEV pairs that represent the Referent in this Metadata Format have keys with an rft. prefix.
The character strings that follow the rtf. prefix (atitle and jtitle, for example) are the key
names defined in the Constraint Definition.

14.2.3 By-Reference Metadata Descriptors

A KEV By-Reference Metadata Descriptor consists of:

• A KEV pair that specifies the URI of a Metadata Format as the value associated with a key of
the form *_ref_fmt. (The * stands for the abbreviated form of an Entity name.)

• A KEV pair that specifies the URL of a By-Reference Metadata description as the value
associated with a key of the form *_ref.

Example 14: By-Reference Metadata Descriptor as a Property List

Formatted for readability:
& req_ref_fmt = http://lib.caltech.edu/fmt/ldap-mtx.html
& req_ref = http://ldap.caltech.edu/janed/record.txt

ANSI/NISO Z39.88-2004 PART 2

44 © 2005 NISO

URL-encoded:
&req_ref_fmt=http%3A%2F%2Flib.caltech.edu%2Ffmt%2Fldap-mtx.html&req_ref=ht
tp%3A%2F%2Fldap.caltech.edu%2Fjaned%2Frecord.txt

Example 14 shows a By-Reference Metadata Descriptor for a Requester. In this example, the
Requester is a student at Caltech, identified by her LDAP record.

• The KEV pair req_ref_fmt = http://lib.caltech.edu/fmt/ldap-mtx.html specifies the
Metadata Format. The key name indicates that this KEV pair specifies a By-Reference
Metadata Format used to describe a Requester. The value identifies the Z39.88-2004 Matrix
Constraint Definition of the Metadata Format. Since this Metadata Format is not registered,
its Constraint Definition must be a Z39.88-2004 Matrix (see Sections 9.2 and 14.2.1).

• The KEV pair req_ref = http://ldap.caltech.edu/janed/record.txt specifies the location of
the Descriptor of the Requester. The keys used in this Descriptor are defined in the
Constraint Definition, and they must not be prefixed.

14.3 Private Data Descriptors

A Private Data Descriptor specifies information about the Entity using a method not defined in this
Standard. This Standard does not provide any global mechanisms to interpret Private Data. Instead, it
is assumed that the Resolver and the Referrer have a common understanding, based on a tacit or
explicit bilateral agreement. To make it possible for the Resolver to interpret Private Data, a
ContextObject that contains a Private Data Descriptor must identify the Referrer that created it.

As described in Section 13.2.1, keys to identify Private Data Descriptors in the KEV ContextObject
Format consist of two parts separated by an underscore character (‘_’). The first part identifies the
Entity; the second part is the character string dat to specify that the Descriptor is a Private Data
Descriptor. For example, the key rfe_dat is associated with a Private Data Descriptor for a
ReferringEntity.

Example 15: Private Data Descriptor in a KEV ContextObject Representation

Formatted for readability:
& rfe_dat = cites/8///citedby/12
& rfr_id = info:sid/elsevier.com:ScienceDirect

URL-encoded:
&rfe_dat=cites%2F8%2F%2F%2Fcitedby%2F12&rfr_id=info%3Asid%2Felsevier.com%3
AScienceDirect

Example 15 shows a Private Data Descriptor for a ReferringEntity.

• The KEV pair rfe_dat = cites/8///citedby/12 is Private Data provided about the
ReferringEntity. In this example, the ReferringEntity is a journal article identified by a
proprietary identifier.

• The KEV pair rfr_id = info:sid/elsevier.com:ScienceDirect is an Identifier Descriptor of the
Referrer, which might help the Resolver to interpret the Private Data.

PART 2 ANSI/NISO Z39.88-2004

© 2005 NISO 45

14.4 Example of a KEV ContextObject Representation

Example 16 represents a complete ContextObject and combines several of the previous examples.

The initial four KEV pairs convey administrative information: the version of the ContextObject Format,
the Character Encoding, the identifier of the ContextObject, and the time at which the ContextObject
Representation was created.

The next nine KEV pairs form a By-Value Metadata Descriptor of the Referent. The rft_val_fmt KEV
pair defines the Metadata Format by assigning the Registry Identifier of a Z39.88-2004 Matrix
Constraint Definition (info:ofi/fmt:kev:mtx:journal) to the rft_val_fmt key. This is followed by KEV
pairs whose keys consist of an rft. prefix and key names, such as atitle and jtitle, that are defined in
the Constraint Definition. These KEV pairs are the By-Value Metadata.

The ten KEV pairs that follow form a By-Value Metadata Descriptor of the ReferringEntity. The
structure of this part is identical to that used for the Referent.

The final two KEV pairs form a By-Reference Metadata Descriptor of the Requester. The req_ref_fmt
KEV pair defines the Metadata Format by assigning the URL of a Z39.88-2004 Matrix Constraint
Definition that defines the Metadata Format to the req_ref_fmt key. The req_ref KEV pair specifies
the URL of the actual metadata.

Example 16: KEV ContextObject Representation

Formatted for readability:
 ctx_ver = Z39.88-2004
& ctx_enc = info:ofi/enc:UTF-8
& ctx_id = 345871
& ctx_tim = 2002-03-20T08:55:12Z
& rft_val_fmt = info:ofi/fmt:kev:mtx:journal
& rft.atitle = Isolation of a common receptor for coxsackie B
& rft.jtitle = Science
& rft.aulast = Bergelson
& rft.auinit = J
& rft.date = 1997
& rft.volume = 275
& rft.spage = 1320
& rft.epage = 1323
& rfe_val_fmt = info:ofi/fmt:kev:mtx:journal
& rfe.atitle = p27-p16 Chimera: A Superior Antiproliferative
& rfe.jtitle = Molecular Therapy
& rfe.aulast = McArthur
& rfe.aufirst = James
& rfe.date = 2001
& rfe.volume = 3
& rfe.issue = 1
& rfe.spage = 8
& rfe.epage = 13
& req_ref_fmt = http://lib.caltech.edu/fmt/ldap-mtx.html
& req_ref = http://ldap.caltech.edu/janed/record.txt

ANSI/NISO Z39.88-2004 PART 2

46 © 2005 NISO

URL-encoded:
ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&ctx_id=345871&ctx_tim
=2002-03-20T08%3A55%3A12Z&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajourn
al&rft.atitle=Isolation%20of%20a%20common%20receptor%20for%20coxsackie%20B
rft.jtitle=Science&rft.aulast=Bergelson&rft.auinit=J&rft.date=1997&rft.vol
ume=275&rft.spage=1320&rft.epage=1323&rfe_val_fmt=info%3Aofi%2Ffmt%3Akev%3
Amtx%3Ajournal&rfe.atitle=p27-p16%20Chimera%3A%20A%20Superior%20Antiprolif
erative&rfe.jtitle=Molecular%20Therapy&rfe.aulast=McArthur&rfe.aufirst=Jam
es&rfe.date=2001&rfe.volume=3&rfe.issue=1&rfe.spage=8&rfe.epage=13&req_ref
_fmt=http%3A%2F%2Flib.caltech.edu%2Ffmt%2Fldap-mtx.html&req_ref=http%3A%2F
%2Fldap.caltech.edu%2Fjaned%2Frecord.txt

15 KEV-Based Community Profiles

A Community Profile lists a selection of Registry entries. This selection specifies the ContextObject
Format, the Metadata Format(s), and the Transport(s) that form the core properties of an OpenURL
Application. Further information on the creation of Community Profiles is found in Section 11.

A Resolver that conforms to the KEV ContextObject Format must process all items that conform to
Registry entries specified in a Community Profile using the KEV ContextObject Format. Communities
may define additional conformance rules in their Community Profiles.

Appendix C describes the Level 1 San Antonio Community Profile, which is an example of a
Community Profile based on the KEV ContextObject Format. This Community Profile was developed
by NISO Committee AX for the scholarly-information community. It deploys an Application that is
similar to, but is more expressive than, the OpenURL 0.1 specification. In the remainder of this
Standard, this Community Profile will be referred to as the SAP1 Community Profile. Its Registry
Identifier is info:ofi/pro:sap1-2004.

Other communities are encouraged to use the KEV ContextObject Format to deploy their own
OpenURL Applications. As specified in Section 11, each Application must be defined in a Community
Profile. A straightforward way to deploy KEV-based Applications is to modify the SAP1 Community
Profile to the needs of new communities.

 ANSI/NISO Z39.88-2004

© 2005 NISO 47

The OpenURL Framework
for Context-Sensitive Services

Part 3: The XML ContextObject Format

Part 1 (Sections 5 through 11) defines the core components of the OpenURL Framework:
Namespaces, Character Encodings, Serializations, Constraint Languages, ContextObject Formats,
Metadata Formats, Transports, and Community Profiles.

Parts 2, 3, and 4 (Sections 12 through 22) define instances of these core components that illustrate
the abstract concepts of Part 1. These instances form the initial content of the Registry. Each
instance is described, given a Registry Identifier, and entered into the Registry at
<http://www.openurl.info/registry/>. The initial Registry launches two Applications of the OpenURL
Framework Standard intended for the scholarly-information community. The first Application provides
a migration path from OpenURL 0.1 to the OpenURL Framework Standard. The second Application
provides a path for future growth by harnessing the full expressive power of XML.

Part 2 defines a ContextObject Format inspired by the query string of the HTTP(S) GET request as
specified in OpenURL 0.1. Part 3 defines a ContextObject Format based on XML. Part 4 defines six
Transports. Four of these Transports are generic and may be used with any ContextObject Format.
Two of the Transports are developed specifically for the ContextObject Format defined in Part 2 to
provide a migration path from OpenURL 0.1 to this Standard.

Part 3 (Sections 16 through 19) defines a ContextObject Format based on XML (eXtensible Markup
Language). XML is a markup language from the World Wide Web Consortium [1]. Like HTML, it uses
tags to describe text and data in documents, but XML provides the capability of creating customized
tags. XML Documents are widely used in the exchange of structured text and data between computer
applications. With the XML ContextObject Format, ContextObjects can convey greater detail, which
Resolvers can use to provide more appropriate services.

Section 16 describes and registers the following instances of core components necessary to define
the XML ContextObject Format: the XML Serialization, the XML Schema Constraint Language, and
Constraint Definitions that define the XML ContextObject Format and illustrate XML Metadata
Formats. Sections 17 and 18 apply the XML ContextObject Format to obtain XML ContextObject
Representations.

Using the XML ContextObject Format, one or more ContextObjects are represented as an XML
Document. This XML Document may be transported by any of the Transports defined in Sections 20
and 21. These Transports and the XML ContextObject Format form the basis for a new Application
that makes available the full expressive power of the XML syntax and structure to providers of
context-sensitive services for the scholarly-information community. This Application is defined by the
Level 2 San Antonio Community Profile; see Section 19 and Appendix D.

http://www.openurl.info/registry/

ANSI/NISO Z39.88-2004 PART 3

48 © 2005 NISO

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 49

16 The XML ContextObject Format

This Section introduces the Format triples of the XML ContextObject Format and the XML Metadata
Formats necessary to describe Entities. The Format triples consist of:

• The XML Serialization (Section 16.1)

• The XML Schema Constraint Language (Section 16.2)

• Constraint Definitions expressed in XML Schema document instances that define the
structure of the XML ContextObject Format (Sections 16.3.1 and 17) and of XML Metadata
Formats (Sections 16.3.2 and 18).

While Sections 16, 17, and 18 introduce, describe, and illustrate these elements, the Registry is the
authoritative source for their complete specification.

16.1 The XML Serialization

Registry Identifier info:ofi/fmt:xml

The XML Serialization is XML as defined in the Extensible Markup Language (XML) 1.0 (Third
Edition) [1].

16.2 XML Schema as a Constraint Language

Registry Identifier info:ofi/fmt:xml:xsd

This Standard makes use of XML Schema [3] [4] to specify constraints and structures for resource
descriptions expressed in the XML Serialization. In the XML Serialization, descriptions are expressed
as XML Documents that conform to a registered XML Schema.

16.3 Constraint Definitions in the XML ContextObject Format

The main Constraint Definition associated with the XML Serialization and the XML Schema
Constraint Language is the XML ContextObject Format. This Format defines the Representation of a
ContextObject as an XML Document.

In addition, there are Constraint Definitions known as XML Metadata Formats that define the
Representation of Entities of ContextObjects as XML Documents or XML Document fragments.
These Representations may be used for both By-Value and/or By-Reference Metadata Descriptors.

In the Registry, a Constraint Definition for a Format expressed in the XML Schema Constraint
Language is described by the following metadata:

• dc:title: the title of the Format

• dc:creator: the name of the community that defined the Format

• dc:description: a brief description of the Format

• dc:identifier: a locator of the XML Schema that defines the Format

• dcterms:created: the date when the Format was created

• dcterms:modified: the date when the Format was modified

XML Schemas are primarily intended for use by XML parsing and validation software.

ANSI/NISO Z39.88-2004 PART 3

50 © 2005 NISO

16.3.1 XML Schema Constraint Definition for the XML ContextObject Format

Registry identifier: info:ofi/fmt:xml:xsd:ctx

Table 18 is the XML Schema for ContextObjects. This XML Schema Constraint Definition, also
available in the Registry at < http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:ctx>, allows for
the definition of multiple ContextObjects in one XML Document.

Table 18: XML Schema Constraint Definition of XML ContextObject Format

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="info:ofi/fmt:xml:xsd:ctx"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:ctx="info:ofi/fmt:xml:xsd:ctx-2004"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xsi:schemaLocation="http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema.xsd">
 <annotation>
 <documentation>XML Schema defining XML ContextObject
Format. Validated with XML Spy v.5.3 on September 27th 2003. This XML
Schema
is available at http://www.openurl.info/registry/docs/info:ofi/fmt:xml:
xsd:ctx</documentation>
 <appinfo xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/">
 <dc:title>XML ContextObject Format </dc:title>
 <dc:creator>NISO Committee AX, OpenURL Standard
Committee</dc:creator>
 <dc:creator>Herbert Van de Sompel</dc:creator>
 <dc:description>This XML Schema defines a format to
express one or more ContextObjects as an XML document.</dc:description>
 <dc:identifier>info:ofi/fmt:xml:xsd:ctx-
2004</dc:identifier>

 <dc:identifier>http://www.openurl.info/registry/docs/info:ofi/fmt
:xml:xsd:ctx </dc:identifier>
 <dcterms:created>2004-01-01</dcterms:created>
 </appinfo>
 </annotation>
 <element name="context-objects">
 <annotation>
 <documentation>The 'context-objects' element is a
wrapper holding one or more autonomous XML
ContextObjects.</documentation>
 </annotation>
 <complexType>
 <complexContent>
 <extension base="ctx:context-objects-type"/>
 </complexContent>
 </complexType>
 </element>

http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:ctx

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 51

 <complexType name="context-objects-type">
 <annotation>
 <documentation>The 'context-objects' element is a
wrapper holding one or more autonomous ContextObjects.</documentation>
 <documentation>The 'context-objects' element has an
optional administrative child element to hold Community-specific
administrative data. The name of that element is
'administration'.</documentation>
 </annotation>
 <sequence>
 <element name="administration"
type="ctx:administration-type" minOccurs="0"/>
 <element ref="ctx:context-object"
maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <element name="context-object">
 <annotation>
 <documentation>The ContextObject is an information
construct to represent an Entity that is referenced in a networked
environment (the Referent) along with Entities that constitute the
context in which the Referent is referenced. In the ContextObject, the
Entities that describe the context are: the ReferringEntity, the
Requester, the Resolver, the ServiceType, the Referrer. The
ContextObject is represented by the 'context-object' element in this
XML ContextObject Format</documentation>
 </annotation>
 <complexType>
 <complexContent>
 <extension base="ctx:context-object-type"/>
 </complexContent>
 </complexType>
 </element>
 <complexType name="context-object-type">
 <annotation>
 <documentation>The ContextObject represented using
the XML ContextObject Format contains descriptions of the following
Entities: (1) exactly one Referent, (2) zero or one ReferringEntity,
(3) zero or one Requester, (4) zero or more ServiceTypes, (5) zero or
more Resolvers, and (6) zero or one Referrer. In the XML ContextObject
Format, these Entities are represented by the elements 'referent',
'referring-entity', 'requester', 'service-type', 'resolver', and
'referrer', respectively.</documentation>
 <documentation>Each ContextObject has the following
optional administrative attributes: (1) 'version' attribute - version
of the ContextObject - fixed value Z39.88-2004 (optional), (2)
'identifier' attribute - identifier of the ContextObject (optional),
and (3) 'timestamp' attribute - date/time of creation of the
ContextObject (optional).</documentation>
 <documentation>The 'context-object' element has an
optional administrative child element to hold Community-specific

ANSI/NISO Z39.88-2004 PART 3

52 © 2005 NISO

administrative data. The name of that element is
'administration'.</documentation>
 </annotation>
 <sequence>
 <element name="administration"
type="ctx:administration-type" minOccurs="0"/>
 <element name="referent" type="ctx:descriptor-type"/>
 <element name="referring-entity"
type="ctx:descriptor-type" minOccurs="0"/>
 <element name="requester" type="ctx:descriptor-type"
minOccurs="0"/>
 <element name="service-type" type="ctx:descriptor-
type" minOccurs="0" maxOccurs="unbounded"/>
 <element name="resolver" type="ctx:descriptor-type"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="referrer" type="ctx:descriptor-type"
minOccurs="0"/>
 </sequence>
 <attribute name="version" use="optional" fixed="Z39.88-
2004"/>
 <attribute name="identifier" type="string" use="optional"/>
 <attribute name="timestamp" type="ctx:utc-datetime-type"
use="optional"/>
 </complexType>
 <complexType name="descriptor-type">
 <annotation>
 <documentation>In the XML ContextObject Format, each
Entity of the ContextObject can be described by means of the following
Descriptors: (1) zero or more Identifier Descriptors, (2) zero or more
By-Value Metadata Descriptors, (3) zero or more By-Reference Metadata
Descriptors, and (4) zero or more Private Data Descriptors. In the XML
ContextObject Format, these Descriptors are contained in the elements
'identifier', 'metadata-by-val', 'metadata-by-ref', and 'private-data',
respectively.</documentation>
 </annotation>
 <sequence>
 <element name="identifier" type="ctx:identifier-type"
minOccurs="0" maxOccurs="unbounded"/>
 <element name="metadata-by-val" type="ctx:metadata-
by-val-type" minOccurs="0" maxOccurs="unbounded"/>
 <element name="metadata-by-ref" type="ctx:metadata-
by-ref-type" minOccurs="0" maxOccurs="unbounded"/>
 <element name="private-data" type="ctx:private-data-
type" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <simpleType name="identifier-type">
 <annotation>
 <documentation>Identifiers in the OpenURL Framework
are URIs</documentation>

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 53

 </annotation>
 <restriction base="anyURI"/>
 </simpleType>
 <complexType name="metadata-by-val-type">
 <annotation>
 <documentation>By-Value Metadata is provided through
an XML description embedded in the ContextObject.</documentation>
 <documentation>The By-Value Metadata is provided as
the combination of (1) a 'format' element, which identifies the
Metadata Format of the By-Value Metadata, and (2) a 'metadata' element
in which the metadata corresponding to the identified Metadata Format
is contained.</documentation>
 </annotation>
 <sequence>
 <element name="format" type="ctx:metadata-identifier-
type"/>
 <element name="metadata" type="ctx:metadata-type"/>
 </sequence>
 </complexType>
 <complexType name="metadata-type">
 <sequence>
 <any namespace="##other" processContents="lax"/>
 </sequence>
 </complexType>
 <complexType name="metadata-by-ref-type">
 <annotation>
 <documentation>By-Reference Metadata is provided by
means of the network-location of a document that contains the
metadata.</documentation>
 <documentation>By-Reference Metadata is provided as
the combination of (1) a 'format' element, which identifies the
Metadata Format of the By-Reference Metadata, and (2) a 'location'
element that specifies the network-location of the By-Reference
Metadata</documentation>
 </annotation>
 <sequence>
 <element name="format" type="ctx:metadata-identifier-
type"/>
 <element name="location" type="ctx:network-location-
type"/>
 </sequence>
 </complexType>
 <complexType name="private-data-type">
 <annotation>
 <documentation>Private Data is provided through an
XML description that declares its XML Namespace URI and
schemaLocation.</documentation>
 </annotation>
 <sequence>

ANSI/NISO Z39.88-2004 PART 3

54 © 2005 NISO

 <any namespace="##other" processContents="lax"/>
 </sequence>
 </complexType>
 <simpleType name="metadata-identifier-type">
 <annotation>
 <documentation>Metadata Formats in the OpenURL
Framework are identified by means of URIs. Registered Metadata Formats
have a URI in the info:ofi/fmt: namespace, whereas Unregistered
Metadata Formats have a URI in another URI namespace. Both URIs are
dereferencable to a document defining the Metadata
Format</documentation>
 </annotation>
 <restriction base="anyURI"/>
 </simpleType>
 <simpleType name="network-location-type">
 <annotation>
 <documentation>The content of the network-location
element is a URL specifying the network location of the By-Reference
Metadata Description</documentation>
 </annotation>
 <restriction base="anyURI"/>
 </simpleType>
 <complexType name="administration-type">
 <annotation>
 <documentation>Administrative information can be
attached to the 'context-objects' and/or the 'context-object' element.
Its content can be defined by communities of implementers.
 </documentation>
 </annotation>
 <sequence>
 <any namespace="##other" processContents="lax"/>
 </sequence>
 </complexType>
 <simpleType name="utc-datetime-type">
 <annotation>
 <documentation>Valid values follow the ISO 8601 YYYY-
MM-DD or YYYY-MM-DDTHH:MM:SSZ notation.</documentation>
 </annotation>
 <union memberTypes="date dateTime"/>
 </simpleType>
</schema>

16.3.2 XML Schema Constraint Definitions for XML Metadata Formats

The XML Schema Constraint Language is also used to define XML Metadata Formats. Table 28 in
Appendix D contains the list of XML Metadata Formats that are in the initial Registry. For each of
these XML Metadata Formats, the Registry at <http://www.openurl.info/registry> contains a complete
and authoritative Constraint Definition.

http://www.openurl.info/registry/

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 55

Table 19 is a Constraint Definition in the form of an XML Schema to describe a class of Entities of the
type “journal” (which includes “journal article”). This Constraint Definition is registered and available in
the Registry at <http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:journal>. Therefore, it
defines a registered XML Metadata Format, which can be identified using the “info” URI scheme.

In principle, registration is optional, because an XML Serialization may use any XML Schema as a
Metadata Format by identifying the XML Schema with its “http” URI in the format element. In
practice, however, it is unlikely that Resolvers will be able to make sense of the metadata if an XML
Metadata Format is not registered.

Table 19: XML Schema Constraint Definition of XML Metadata Format for “journal”

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="info:ofi/fmt:xml:xsd:journal"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jo="info:ofi/fmt:xml:xsd:journal"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified"
xsi:schemaLocation="http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema.xsd">
 <xs:annotation>
 <xs:documentation>XML Schema defining the XML Metadata
Format to represent serially published documents, and its component
parts "issue" and "article". This XML Schema is available at
http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:journal</x
s:documentation>
 <xs:appinfo xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/">
 <dc:title>XML Format article</dc:title>
 <dc:creator>Committee NISO AX, OpenURL Standard
Committee</dc:creator>
 <dc:description>This XML Schema defines a format to
express properties of serial publications and their component
parts</dc:description>

 <dc:identifier>info:ofi/fmt:xml:xsd:journal</dc:identifier>

 <dc:identifier>http://www.openurl.info/registry/docs/info:ofi/fmt
:xml:xsd:journal</dc:identifier>
 <dcterms:created>2003-09-27</dcterms:created>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name="journal" type="jo:journalType">
 <xs:annotation>
 <xs:documentation>The root element "journal" contains
child elements that are used to express properties of serial
publications</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:complexType name="journalType">
 <xs:sequence>
 <xs:element name="authors" type="jo:authorType"
minOccurs="0">

http://www.openurl.info/registry/docs/mtx/info:ofi/fmt:xml:xsd:journal

ANSI/NISO Z39.88-2004 PART 3

56 © 2005 NISO

 <xs:annotation>
 <xs:documentation>The "authors" element
contains child elements that are used to express authorship of an
individual article in a serial publication. The "authors" element is
not repeatable, it contains all authors, and allows for the
indication of the position of the author in the publication's list of
authors</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="atitle" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Article
title</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="title" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Journal title. Provided
for compatibility with OpenURL version 0.1. Usage of the "jtitle"
element is preferred</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="jtitle" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Journal title. Use the
most complete title available, e.g. "journal of the american medical
association". Abbreviated titles, when known, are provided in the
"stitle" element. Journal title information can also be provided in
the "title" element, which is provided for compatibility with OpenURL
version 0.1</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="stitle" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Abbreviated or short
journal title. This is used for journal title abbreviations, e.g. "J
Am Med Assn"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="date" type="jo:dateType"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Date of publication in
ISO 8601 form YYYY, YYYY-MM or YYYY-MM-DD</xs:documentation>
 </xs:annotation>
 </xs:element>

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 57

 <xs:element name="chron" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Indications of
chronology in a non ISO8601 form (like "Spring" or "1st quarter")
should be carried in this element; the element content is not
normalized. Where numeric ISO8601 dates are also available, they
should be provided in the "date" element. As such, a recorded date of
publication of "Spring, 1992" becomes "date=1992" and "chron=spring".
Chronology information can also be provided in the "ssn" and
"quarter" elements</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ssn" type="jo:ssnType"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Season (chronology).
Legitimate values are "spring", "summer", "fall",
"winter"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="quarter" type="jo:quarterType"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Quarter (chronology).
Legitimate values are "1", "2", "3", "4"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="volume" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Volume designation.
Volume is usually expressed as a number but could be roman numerals
or non-numeric, e.g. "124", or "VI"."4"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="part" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Part can be a special
subdivision of a volume or it can be the highest level division of
the journal. Parts are often designated with letters or names, e.g.
"B", "Supplement"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="issue" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>This is the designation
of the published issue of a journal, corresponding to the actual

ANSI/NISO Z39.88-2004 PART 3

58 © 2005 NISO

physical piece in most cases. While usually numeric, it could be non-
numeric. Note that some publications use chronology in the place of
enumeration, i.e. Spring, 1998.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="spage" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>First page number of a
start/end (spage-epage) pair. Note that pages are not always
numeric.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="epage" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Second (ending) page
number of a start/end (spage-epage) pair</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="pages" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Start and end pages in
the form "startpage-endpage". This field can also be used for an
unstructured pagination statement when data relating to pagination
cannot be interpreted as a start-end pair, i.e. "A7, C4-9", "1-3,
6"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="artnum" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Article number assigned
by the publisher. Article numbers are often generated for
publications that do not have usable pagination, in particular
electronic journal articles, e.g. "unifi000000090". If article
numbers are identifiers that follow a URI Scheme such as "info:doi/"
the information should be provided in the Identifier Descriptor of
the ContextObject, not in this "artnum" element. Likewise, if
articles are identified by means of a registered URI Scheme such as
the http scheme, the information should be provided in the
Identifier Descriptor of the ContextObject</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="issn" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>International Standard
Serial Number (ISSN). ISSN numbers may contain a hyphen, e.g. "1041-

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 59

5653"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="eissn" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>ISSN for electronic
version of the journal. Although there is no distinction by format in
the assignment of ISSNs, some bibliographic services now carry both
the ISSN for the paper version and a separate ISSN for the electronic
version. This data element is included here to allow expression of
both types of ISSN numbers</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="isbn" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>International Standard
Book Number (ISBN). The ISBN is usually presented as 9 digits plus a
final check digit (which may be "X"), e.g. "057117678X" . ISBN
numbers may contain hyphens, e.g. "1-878067-73-7"
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="coden" type="xs:string"
minOccurs="0">
 <xs:annotation>

 <xs:documentation>CODEN</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="sici" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Serial Item and
Contribution Identifier (SICI)</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="genre" type="jo:genreType"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Genre of the document.
Legitimate values for the "genre" element are: (1) "journal": for a
serial publication issued in successive parts (2) "issue": for one
instance of the serial publication (3) "article": for a document
published in a journal. (4) "conference": for a record of a
conference that includes one or more conference papers and that is
published as an issue of a journal or serial publication (5)
"proceeding": for a single conference presentation published in a
journal or serial publication (6) "preprint": for an individual paper

ANSI/NISO Z39.88-2004 PART 3

60 © 2005 NISO

or report published in paper or electronically prior to its
publication in a journal or serial (7) "unknown": use when the genre
is unknown.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="authorType">
 <xs:choice maxOccurs="unbounded">
 <xs:element name="author"
type="jo:detailedAuthorType" minOccurs="0"/>
 <xs:element name="au" type="xs:string" minOccurs="0">
 <xs:annotation>
 <xs:documentation>The author's full name,
i.e. "Smith, Fred M", "Harry S. Truman"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="aucorp" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Organization or
corporation that is the author or creator of the book, i.e. "Mellon
Foundation"</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:choice>
 <xs:attribute name="rank" type="xs:positiveInteger"
use="optional">
 <xs:annotation>
 <xs:documentation>An integer indicating the
position of the author in the publication's list of authors , e.g.
"1" for first author, "2" for second author, etc.</xs:documentation>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 <xs:complexType name="detailedAuthorType">
 <xs:sequence>
 <xs:element name="aulast" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>The author's family
name. This may be more than one word. In many citations, the author's
family name is recorded first and is followed by a comma, i.e. Smith,
Fred James is recorded as "aulast=smith"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="aufirst" type="xs:string"
minOccurs="0">
 <xs:annotation>

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 61

 <xs:documentation>The author's given
name or names or initials. This data element may contain multiple
words and punctuation, i.e. "Fred F", "Fred James"</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="auinit" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>The author's first and
middle initials.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="auinit1" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>The author's first
initial.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="auinitm" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>The author's middle
initial.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ausuffix" type="xs:string"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>The author's name
suffix. Qualifiers on an author's name such as "Jr.", "III" are
entered here. i.e. Smith, Fred Jr. is recorded as
"ausuffix=jr"</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:simpleType name="dateType">
 <xs:union memberTypes="xs:gYear xs:gMonth xs:date"/>
 </xs:simpleType>
 <xs:simpleType name="ssnType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="spring"/>
 <xs:enumeration value="summer"/>
 <xs:enumeration value="fall"/>
 <xs:enumeration value="winter"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="quarterType">

ANSI/NISO Z39.88-2004 PART 3

62 © 2005 NISO

 <xs:restriction base="xs:positiveInteger">
 <xs:enumeration value="1"/>
 <xs:enumeration value="2"/>
 <xs:enumeration value="3"/>
 <xs:enumeration value="4"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="genreType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="journal"/>
 <xs:enumeration value="issue"/>
 <xs:enumeration value="article"/>
 <xs:enumeration value="proceeding"/>
 <xs:enumeration value="conference"/>
 <xs:enumeration value="preprint"/>
 <xs:enumeration value="unknown"/>
 </xs:restriction>
 </xs:simpleType>
</xs:schema>

17 XML ContextObject Representations

Registry Identifier info:ofi/fmt:xml:xsd:ctx

Using the XML Format, one or more ContextObjects are expressed in an XML Document.

The XML ContextObject Format triple is as follows:

• The XML Serialization (see Section 16.1), recorded in the Registry under

Registry Identifier info:ofi/fmt:xml

• The XML Schema Constrain Language (see Section 16.2), recorded in the Registry under

Registry Identifier info:ofi/fmt:xml:xsd

• An XML Schema that specifies the actual constraints and structure for the XML ContextObject
Format, recorded in the Registry under

Registry Identifier: info:ofi/fmt:xml:xsd:ctx

Example 17 displays an XML ContextObject Representation that includes administrative data
elements, two Identifier Descriptors to describe the Referent, Identifier Descriptors for the
ReferringEntity, Requester, and Referrer. (Example 19 will show the use of By-Value Metadata in an
XML ContextObject Representation.)

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 63

Example 17: XML ContextObject Representation

<?xml version="1.0" encoding="UTF-8"?>
<ctx:context-objects
 xmlns:ctx="info:ofi/fmt:xml:xsd:ctx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="info:ofi/fmt:xml:xsd:ctx
http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:ctx">
 <ctx:context-object
 timestamp="2002-03-20T08:55:12Z"
 version="Z39.88-2004"
 identifier="456">
 <ctx:referent>
 <ctx:identifier>
 info:doi/10.1126/science.275.5304.1320
 </ctx:identifier>
 <ctx:identifier>info:pmid/9036860</ctx:identifier>
 </ctx:referent>
 <ctx:referring-entity>
 <ctx:identifier>info:doi/10.1006/mthe.2000.0239</ctx:identifier>
 </ctx:referring-entity>
 <ctx:requester>
 <ctx:identifier>mailto:jane.doe@caltech.edu</ctx:identifier>
 </ctx:requester>
 <ctx:referrer>
 <ctx:identifier>
 info:sid/elsevier.com:ScienceDirect
 </ctx:identifier>
 </ctx:referrer>
 </ctx:context-object>
</ctx:context-objects>

17.1 Cardinality Constraints on the XML ContextObject Format

The XML ContextObject Format restricts the number of Entities that may be present in each
ContextObject, the number of Descriptors that may be used to describe Entities, and the number of
ContextObjects that may be bundled in a single XML Representation. These constraints are specified
and summarized in Table 20 (compare this with the fundamental restrictions of Table 1).

ANSI/NISO Z39.88-2004 PART 3

64 © 2005 NISO

Table 20: XML ContextObject Format – Cardinality Constraints

Entities per
ContextObject

Number Descriptors

 Identifier By-Val.
Metadata

By-Ref.
Metadata

Private
Data

Referent 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

ReferringEntity ≤ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Requester ≤ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

ServiceType ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Resolver ≥ 0 ≥ 0 ≥ 0 ≥ 0 ≥ 0

Referrer ≤ 1 ≥ 0 ≥ 0 ≥ 0 ≥ 0

ContextObjects ≥ 1 N/A N/A N/A N/A

17.2 Entity and Descriptor Elements in the XML ContextObject Format

Table 21 gives an overview of the XML ContextObject Format by listing the appropriate XML element
for each combination of Entity and Descriptor. The Table lists those elements as XPath expressions
[2]. These XPath expressions are relative to the ctx:context-object element, not to the ctx:context-
objects element.

For example:

• The XPath expression //referent/identifier of Table 21 addresses XML elements that describe a
Referent by means of Identifier Descriptors. In the XML ContextObject of Example 17, two XML
elements match this XPath expression. Their respective content is
info:doi/10.1126/science.275.5304.1320 and info:pmid/9036860.

• The XPath expression //referent/metadata-by-val/format of Table 21 addresses XML elements
that identify Metadata Formats used for By-Value Metadata of a Referent. In the XML
ContextObject of Example 22, one XML element matches this XPath expression. Its content is
info:ofi/fmt:xml:xsd:journal. This particular Metadata Format is registered, as can be seen from
its identifier in the info:ofi/ namespace.

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 65

Table 21: XML ContextObject Format – Entities and Descriptors

Entities Nr. Descriptors

 Identifier By-Value
Metadata

By-Reference
Metadata

Private Data

Referent 1 //referent/iden
tifier

//referent/meta
data-byval/for
mat
//referent/meta
data-by-val/m
etadata

//referent/meta
data-by-ref/for
mat
//referent/meta
data-by-ref/loc
ation

//referent/priva
te-data

Referring-
Entity

≤ 1 //referring-enti
ty/identifier

//referring-enti
ty/metadata-b
y-val/format

//referring-enti
ty/metadata-b
y-val/metadata

//referring-enti
ty/metadata-b
y-ref/format

//referring-enti
ty/metadata-b
y-ref/location

//referring-entit
y/private-data

Requester ≤ 1 //requester/ide
ntifier

//requester/me
tadata-by-val/f
ormat

//requester/me
tadata-by-val/
metadata

//requester/me
tadata-by-ref/f
ormat

//requester/me
tadata-by-ref/f
ormat/location

//requester/pri
vate-data

Service-
Type

≥ 0 //service-type/
identifier

//service-type/
metadata-by-v
al/format

//service-type/
metadata-by-v
al/metadata

//service-type/
metadata-by-r
ef/format

//service-type/
metadata-by-r
ef/location

//service-type/
private-data

Resolver ≥ 0 //resolver/iden
tifier

//resolver/met
adata-by-val/f
ormat

//resolver/met
adata-by-val/
metadata

//resolver/met
adata-by-ref/fo
rmat

//resolver/met
adata-by-ref/lo
cation

//resolver/priva
te-data

Referrer ≥ 0 //referrer/ident
ifier

//referrer/meta
data-by-val/for
mat

//referrer/meta
data-by-val/m
etadata

//referrer/meta
data-by-ref/for
mat

//referrer/meta
data-by-ref/loc
ation

//referrer/privat
e-data

ANSI/NISO Z39.88-2004 PART 3

66 © 2005 NISO

17.3 Administrative Elements and Attributes in the XML ContextObject Format

Table 22 lists the administrative elements and attributes of an XML ContextObject Representation.
The XML ContextObject Format provides three ways to specify administrative information:

• Three optional attributes of the context-object element

• Community-specific administrative data contained in the administration child element of the
context-object element

• Community-specific administrative data contained in the administration child element of the
context-objects element

Table 22: XML ContextObject Format – Administrative Information

Item Number Element Attribute Definition

Administration ≤ 1 //context-objects
/administration

 Community-defined

Administration ≤ 1 //context-object/
administration

 Community-defined

Version ≤ 1 //context-object@
version

Version of
OpenURL
Framework
Standard. Fixed
value of Z39.88-
2004

Identifier ≤ 1 //context-object@
identifier

Identifier of
ContextObject

Timestamp ≤ 1 //context-object@
timestamp

ISO8601datetime
specifying the time
of creation of the
ContextObject

17.4 Character Encoding in the XML ContextObject Format

Character Encoding in the XML ContextObject Format follows the specifications provided by XML [1].
XML ContextObject Representations must use the UTF-8 encoding of Unicode. As is standard in
XML Documents, character-encoding information is provided by the value of the encoding declaration
in the XML declaration. Because UTF-8 is default for XML, the encoding declaration may be omitted.
If the encoding declaration is present, it must specify UTF-8.

18 Entity Descriptors in the XML ContextObject Format

A Descriptor specifies information about an Entity. There are four types of Descriptors that may be
used in the XML ContextObject Format: Identifier, By-Value Metadata, By-Reference Metadata, and
Private Data.

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 67

18.1 Identifier Descriptors

An Identifier Descriptor specifies an Entity by means of a Uniform Resource Identifier (URI). This URI
may be associated with the Entity itself or with metadata for the Entity. As described in Section 17.2,
Identifier Descriptors in the XML ContextObject Format are represented using identifier elements.

Example 18 shows Identifier Descriptors for a Referent, a Requester, and a Resolver.
Example 18: Identifier Descriptors in an XML ContextObject Representation

 <referent>
 <identifier>info:doi/10.1126/science.275.5304.1320</identifier>
 </referent>
 <referent>
 <identifier>info:pmid/9036860</identifier>
 </referent>
 <requester>
 <identifier>mailto:jane.doe@caltech.edu</identifier>
 </requester>
 <resolver>
 <identifier>http://links.caltech.edu/menu</identifier>

</resolver>

18.2 By-Value and By-Reference Metadata Descriptors

A Metadata Format provides a concrete set of descriptive elements for the purpose of representing
an Entity. For compatibility, Metadata Formats and the ContextObject Format must be based on the
same Serialization and Constraint Language. This compatibility rule is waived for By-Reference
Metadata, provided the Metadata Format is registered (see Sections 9.2 and 18.2.1).

Metadata Formats used in the OpenURL Framework may be registered. Unregistered Metadata
Formats must meet the requirements described in Section 9.2.

18.2.1 Rules Guiding By-Value and By-Reference Metadata Descriptors

The general rules for Metadata Formats are given in Section 9.2. This Section gives the rules for
creating By-Value Metadata and By-Reference Metadata in the XML ContextObject Format. The XML
ContextObject Format accommodates both registered and unregistered Metadata Formats.

• Registered Metadata Formats

− Registered Metadata Formats must be identified by means of the Registry Identifier of
the Metadata Format. The Registry maintains a one-to-one correspondence between the
definition of a Metadata Format and its Registry Identifier. The identification of the
Metadata Format must be provided as the content of the format element.

− The corresponding By-Value Metadata Descriptor must use the XML Serialization and
must conform to an XML Schema. This XML Schema must be in the Registry and
correspond uniquely with the Registry Identifier used to identify the Metadata Format.
The Registry Identifier of the Metadata Format must be of the form:
info:ofi/fmt:xml:xsd:format_name.

− The corresponding By-Reference Metadata Descriptor must be an instance document
that conforms to the Metadata Format identified by the Registry Identifier. Because the
Metadata Format is registered, the By-Reference Metadata Descriptor may use any
registered Serialization, and the Metadata Format to which it conforms may use any

ANSI/NISO Z39.88-2004 PART 3

68 © 2005 NISO

registered Constraint Language. The By-Reference Metadata Descriptor is not limited to
the XML Serialization or the XML Schema Constraint Language.

• Unregistered Metadata Formats

− Unregistered Metadata Formats must be identified by means of a URL that specifies the
network location of the XML Schema that defines the XML Metadata Format. The
identification of the Metadata Format must be provided as the content of the format
element. For example, a Metadata Format could be identified as:
http://www.example.net/x-service.xsd.

− The corresponding By-Value Metadata or By-Reference Metadata Descriptor must use
the XML Serialization: it must be an XML Document that conforms to the XML Schema
at the network location specified by the aforementioned URL.

18.2.2 By-Value Metadata Descriptors

An XML By-Value Metadata Descriptor consists of a metadata-by-val element containing

• a format element containing the format identifier and

• a metadata element containing XML metadata conforming to the XML Schema identified in
the format element.

Example 19: Referent with a By-Value Metadata Descriptor

<ctx:referent>
<ctx:metadata-by-val>
 <ctx:format>info:ofi/fmt:xml:xsd:journal</ctx:format>
 <ctx:metadata>
 <rft:journal xmlns:rft="info:ofi/fmt:xml:xsd:journal"
xsi:schemaLocation="info:ofi/fmt:xml:xsd:journal
http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:journal">
 <rft:authors>
 <rft:author>
 <rft:aulast>Bergelson</rft:aulast>
 <rft:auinit>J</rft:auinit>
 </rft:author>
 </rft:authors>
 <rft:atitle>Isolation of a common receptor for coxsackie B viruses
and adenoviruses 2 and 5
 </rft:atitle>
 <rft:jtitle>Science</rft:jtitle>
 <rft:date>1997</rft:date>
 <rft:volume>275</rft:volume>
 <rft:spage>1320</rft:spage>
 <rft:epage>1323</rft:epage>
 </rft:journal>
 </ctx:metadata>
</ctx:metadata-by-val>

</ctx:referent>

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 69

Example 19 shows a By-Value Metadata Descriptor for a Referent, an article in a journal.

• The XML Metadata Format is identified by info:ofi/fmt:kev:mtx:journal. White space is
trimmed from the element data.

• The XML metadata in the ctx:metadata element conforms to the specified XML Schema.

• The requirement to provide a Format Identifier in the format element is separate from and
independent of the requirement made by XML Schema for elements to declare their XML
namespace.

18.2.3 By-Reference Metadata Descriptors

An XML By-Reference Metadata Descriptor consists of a metadata-by-ref element containing

• a format element that specifies the URI of a Metadata Format and

• a location element that specifies the URL of By-Reference Metadata that conform to the
Constraint Definition identified in the format element.

Example 20: Requester with a By-Reference Metadata Descriptor

<ctx:requester>
<ctx:metadata-by-ref>
 <ctx:format>http://my.example.org/eduperson.xsd</ctx:format>
 <ctx:location>ldap://ldap.caltech.edu:389/janed</ctx:location>
</ctx:metadata-by-ref>

</ctx:requester>

Example 20 shows a By-Reference Metadata Descriptor for a Requester. In this example, the
Requester is Jane Doe, a student at Caltech, identified by her LDAP record.

• The Metadata Format is identified by http://my.example.org/eduperson.xsd. Because this
Metadata Format is not registered, this must be the URL of an XML Schema.

• The XML Document retrieved from ldap://ldap.caltech.edu:389/janed should conform to the
specified XML Schema.

18.3 Private Data Descriptors

A Private Data Descriptor specifies information about the Entity using a method not defined in this
Standard. This Standard does not provide any global mechanisms to interpret Private Data. Instead, it
is assumed that the Resolver and the Referrer have a common understanding, based on a tacit or
explicit bilateral agreement. To make it possible for the Resolver to interpret Private Data, a
ContextObject that contains Private Data must identify the Referrer that created it.

Example 21: ReferringEntity with a Private Data Descriptor

<referring-entity>
<private-data>
 <x:citdata xmlns:x="http://example.org/x" cites="8" citedby="12"/>
</private-data>

</referring-entity>

In Example 21, the information in the referring-entity element is XML from an external unidentified
scheme. The meaning of data in the private-data element is defined by the Referrer, which is
identified in the referrer element (not shown in the example).

ANSI/NISO Z39.88-2004 PART 3

70 © 2005 NISO

18.4 Example of an XML ContextObject Representation

Example 22 shows an XML Representation of a ContextObject that combines several of the previous
examples.

The first line is a common XML introduction that specifies the XML version number and the XML
character encoding.

The context-objects element is an optional container to hold multiple context-object elements. The
context-objects element includes appropriate XML namespace declarations that indicate to XML
processors how to validate the XML Document.

In this example, the context-objects element holds only one context-object element. The attributes
of the context-object element specify the administrative data of the ContextObject: time of creation,
version of this Standard, and an optional identifier for the ContextObject Representation. The optional
identifier might be used to assist in the retrieval of ContextObject Representations.

The Referent is described in the referent element by means of a By-Value Metadata Descriptor in the
metadata-by-val element. The format element specifies the XML Metadata Format for a journal
(info:ofi/fmt:xml:xsd:journal). This is followed by the metadata element, which holds a journal
element that contains the actual metadata for the Referent in the specified Metadata Format. The
journal element holds an authors element that lists the authors, an atitle element to specify the title
of the article, a jtitle element to specify the title of the journal, a date element to specify the date of
publication, a volume element, a spage element for the starting page, and an epage element for the
end page of the article.

A ReferringEntity is described in the referring-entity element by means of an Identifier Descriptor in
the identifier element.

The Requester is described in the requester element by means of a By-Reference Metadata
Descriptor in the metadata-by-ref element. The latter contains a format element and a location
element to specify, respectively, the Metadata Format and the location of the actual metadata. The
Metadata Format for the Requester is identified by the URL http://my.example.org/eduperson.xsd.
For the ContextObject Representation to be valid, the LDAP URL ldap://ldap.caltech.edu:389/janed
must point to an XML Document that conforms to the XML Schema located at the URL of the
Metadata Format (http://my.example.org/eduperson.xsd).

Finally, the Referrer is described in the referrer element by means of an Identifier Descriptor in the
identifier element. This element contains an identifier from the info:sid/ namespace used to identify
of sources of information.

Example 22: XML ContextObject Representation

<?xml version="1.0" encoding="UTF-8"?>
<ctx:context-objects xmlns:ctx="info:ofi/fmt:xml:xsd:ctx"
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="info:ofi/fmt:xml:xsd:ctx-2004
http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:ctx">
 <ctx:context-object timestamp="2002-06-14T12:13:00Z" version="Z39.88-
2004" identifier="125">
 <ctx:referent>
 <ctx:metadata-by-val>
 <ctx:format>info:ofi/fmt:xml:xsd:journal</ctx:format>
 <ctx:metadata>
 <rft:journal
 xmlns:rft="info:ofi/fmt:xml:xsd:journal"
 xsi:schemaLocation="info:ofi/fmt:xml:xsd:journal

PART 3 ANSI/NISO Z39.88-2004

© 2005 NISO 71

http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:journal">
 <rft:authors>
 <rft:author>
 <rft:aulast>Bergelson</rft:aulast>
 <rft:auinit>J</rft:auinit>
 </rft:author>
 </rft:authors>
 <rft:atitle>Isolation of a common receptor for coxsackie B
viruses and adenoviruses 2 and 5</rft:atitle>
 <rft:jtitle>Science</rft:jtitle>
 <rft:date>1997</rft:date>
 <rft:volume>275</rft:volume>
 <rft:spage>1320</rft:spage>
 <rft:epage>1323</rft:epage>
 </rft:journal>
 </ctx:metadata>
 </ctx:metadata-by-val>
 </ctx:referent>
 <ctx:referring-entity>
 <ctx:identifier>info:doi/10.1006/mthe.2000.0239</ctx:identifier>
 </ctx:referring-entity>
 <ctx:requester>
 <ctx:metadata-by-ref>
 <ctx:format>http://my.example.org/eduperson.xsd</ctx:format>
 <ctx:location>ldap://ldap.caltech.edu:389/janed</ctx:location>
 </ctx:metadata-by-ref>
 </ctx:requester>
 <ctx:referrer>
 <ctx:identifier>info:sid/elsevier.com:ScienceDirect</ctx:identifier>
 </ctx:referrer>
 </ctx:context-object>
</ctx:context-objects>

19 XML-Based Community Profiles

A Community Profile lists a selection of Registry entries. This selection specifies the ContextObject
Format, the Metadata Format(s), and the Transport(s) that form the core properties of an OpenURL
Application. Further information on the creation of Community Profiles is found in Section 11.

A Resolver that conforms to the XML ContextObject Format must process all items that conform to
Registry entries specified in a Community Profile using the XML ContextObject Format. Communities
may define additional conformance rules in their Community Profiles.

Appendix D describes the Level 2 San Antonio Community Profile, which is an example of a
Community Profile based on the XML ContextObject Format. This Community Profile was developed
by NISO Committee AX for the scholarly-information community. In the remainder of this Standard,
this Community Profile will be referred to as the SAP2 Community Profile. Its Registry Identifier is
info:ofi/pro:sap2-2004.

ANSI/NISO Z39.88-2004 PART 3

72 © 2005 NISO

Other communities are encouraged to use the XML ContextObject Format to deploy their own
OpenURL Framework Applications. As specified in Section 11, each Application must be defined in a
Community Profile. A straightforward way to deploy XML-based Applications is to modify the SAP2
Community Profile to the needs of new communities.

 ANSI/NISO Z39.88-2004

© 2005 NISO 73

The OpenURL Framework
for Context-Sensitive Services

Part 4: OpenURL Transports

Part 1 (Sections 5 through 11) defines the core components of the OpenURL Framework:
Namespaces, Character Encodings, Serializations, Constraint Languages, ContextObject
Formats, Metadata Formats, Transports, and Community Profiles.

Parts 2, 3, and 4 (Sections 12 through 22) define instances of these core components that
illustrate the abstract concepts of Part 1. These instances form the initial content of the Registry.
Each instance is described, given a Registry Identifier, and entered into the Registry at
<http://www.openurl.info/registry/>. The initial Registry launches two Applications of the
OpenURL Framework Standard intended for the scholarly-information community. The first
Application provides a migration path from OpenURL 0.1 to the OpenURL Framework Standard.
The second Application provides a path for future growth by harnessing the full expressive power
of XML.

Part 2 defines a ContextObject Format inspired by the query string of the HTTP(S) GET request
as specified in OpenURL 0.1. Part 3 defines a ContextObject Format based on XML.

Part 4 (Sections 20, 21, and 22) defines six methods to convey ContextObject Representations
over a network. All six methods use the HTTP and HTTPS protocols defined in IETF RFC 2616
[14]. They are collectively called OpenURL Transports. Four of these Transports are generic and
may be used with any ContextObject Format. Two of the Transports are developed specifically
for the ContextObject Format defined in Part 2 to provide a migration path from OpenURL 0.1 to
this Standard. Communities may use these transports in new Applications, and/or they may
choose to create and register new instances of Transports. For example, a community could
consider defining a SOAP-based Transport for XML ContextObject Representations.

Section 20 specifies By-Reference OpenURL Transports, which use HTTP(S) as the network
protocol to transport network locations of ContextObject Representations.

Section 21 specifies the By-Value OpenURL Transports, which use HTTP(S) as the network
protocol to transport ContextObject Representations.

By-Reference and By-Value OpenURL Transports are generic: they may be used to transport
KEV ContextObject Representations, XML ContextObject Representations, and ContextObject
Representations based on other, yet-to-be-registered, ContextObject Formats.

Section 22 specifies Inline OpenURL Transports, which use HTTP(S) as the network protocol to
transport KEV ContextObject Representations carried as KEV pairs in the HTTP(S) query string.

Inline OpenURL Transports may only be used to transport KEV ContextObject Representations.
Inline OpenURL Transports must not be used to transport ContextObject Representations in any
other ContextObject Format. Inline OpenURL Transports are primarily introduced to provide a
migration path from the OpenURL 0.1 specification to this Standard. The Implementation
Guidelines available at <http://www.openurl.info/registry/docs/implementation_guidelines/>
provide the details of this upgrade path for the scholarly-information community.

The OpenURL 0.1 specification, which is not a Transport as defined by this Standard, is available
in the Registry at <http://www.openurl.info/registry/docs/pdf/openurl-01.pdf>.

Note: The terms “by reference” and “by value” refer to basic programming techniques that are
widely applicable. In this Standard, both techniques are used independently in two contexts:
Transports and Metadata. Both By-Reference and By-Value Transports may transport
ContextObject Representations that contain By-Reference and/or By-Value Metadata.

http://www.openurl.info/registry/
http://www.openurl.info/registry/docs/pdf/openurl-01.pdf

ANSI/NISO Z39.88-2004 PART 4

74 © 2005 NISO

PART 4 ANSI/NISO Z39.88-2004

© 2005 NISO 75

20 By-Reference OpenURL Transports

A By-Reference OpenURL Transport transports the network location of a ContextObject
Representation. The Representation itself is not transported, but resides at a network location.
Depending on the constraints of the ContextObject Format, the Representation stored at a
network location may contain the description of one or more ContextObjects. The By-Reference
OpenURL Transport may be used for a ContextObject Representation that conforms to any
registered ContextObject Format.

The By-Reference OpenURL Transport uses the HTTP network protocol or its secure sibling,
HTTPS. The Registry Identifiers for these Transports are:

By-Reference OpenURL Transport over HTTP info:ofi/tsp:http:openurl-by-ref
By-Reference OpenURL Transport over HTTPS info:ofi/tsp:https:openurl-by-ref

This Section describes both Transports, which are identical except for their use of HTTP or
HTTPS as the respective network protocol.

For each transportation via the By-Reference OpenURL Transport, a base URL specifies the
“Internet host and port, and path” of the target of the transportation, an HTTP(S)-based service
called a Resolver.

A By-Reference OpenURL Transport may convey the network location of a ContextObject
Representation via HTTP(S) GET or HTTP(S) POST.

Appendix E provides implementation guidelines for the By-Reference OpenURL Transports.

20.1 OpenURL Keys in By-Reference OpenURL Transports

A By-Reference OpenURL Transport uses KEV pairs with the following keys, either in the query
string of an HTTP(S) GET request or in the message body of an HTTP(S) POST:

url_ver: OpenURL signature

• Required

• Maximum occurrence: 1

• Format: fixed value is the case-sensitive character string “Z39.88-2004”

• Character set and character encoding: value is US-ASCII

• Example: url_ver=Z39.88-2004

url_tim: Datetime of the creation of the OpenURL

• Optional

• Maximum occurrence: 1

• Format: ISO8601-conformant datetime in the YYYY-MM-DD or
YYYY-MM-DDTHH:MM:SSZ representation

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability): url_tim=2002-08-16T17:23:45Z

ANSI/NISO Z39.88-2004 PART 4

76 © 2005 NISO

url_ctx_fmt: Registry Identifier of the ContextObject Format of the referenced ContextObject
Representation

• Required

• Maximum occurrence: 1

• Format: Registry Identifiers for ContextObject Formats (see Section 6.2)

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability): url_ctx_fmt= info:ofi/fmt:kev:mtx:ctx

url_ctx_ref: Network location of the ContextObject Representation

• Required

• Maximum occurrence: 1

• Dependency: requires url_ctx_fmt

• Format: network location (a URL)

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability):
url_ctx_ref=http://www.example.org/temp/12587.xml

A foreign key in the By-Reference OpenURL Transport is any key that is not an OpenURL key.
Foreign keys may be used in a By-Reference OpenURL Transport, but their meaning is not
defined by the Transport. Resolvers may ignore KEV pairs with foreign keys.

20.2 By-Reference OpenURL Transports using HTTP(S) GET

In the HTTP(S) GET mode of the By-Reference OpenURL Transport, KEV pairs described in
Section 20.1 are concatenated with the ampersand character (‘&’) to form the query string of an
HTTP(S) GET request. The resulting query string is appended to the base URL of the target
Resolver, and separated from it by a question mark (‘?’). As specified by the syntax rules for URIs
[6], the query string following this question mark must be URL-encoded.

Example 23: By-Reference OpenURL Transport using HTTP GET

Formatted for readability:
http://www.example.net/menu?
 url_ver = Z39.88-2004
 & url_tim = 2002-08-16T17:23:45Z
 & url_ctx_fmt = info:ofi/fmt:kev:mtx:ctx
 & url_ctx_ref = http://www.example.org/temp/12587.txt

URL-encoded:
http://www.example.net/menu?url_ver=Z39.88-2004&url_tim=2002-08-16T17%3A
23%3A45Z&url_ctx_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Actx&url_ctx_ref=http
%3A%2F%2Fwww.example.org%2Ftemp%2F12587.txt

Example 23 illustrates the HTTP GET method of the By-Reference OpenURL Transport to
transport the network location of a KEV ContextObject Representation. The first part is formatted
for readability: the query string is not URL encoded, white space is introduced, and KEV pairs are
on separate lines. The second part is formatted for actual use with a URL-encoded query string.

The base URL of the Transport (the network location of the Resolver) is
http://www.example.net/menu. The value assigned to the url_ctx_fmt key is

PART 4 ANSI/NISO Z39.88-2004

© 2005 NISO 77

info:ofi/fmt:kev:mtx:ctx. This declares that the referenced ContextObject Representation is
based on the KEV ContextObject Format. The network location of the ContextObject
Representation is the value assigned to the url_ctx_ref key:
http://www.example.org/temp/12587.txt. This file must contain a set of ampersand-delimited
KEV pairs that conform to the KEV ContextObject Format.

20.3 By-Reference OpenURL Transports using HTTP(S) POST

In the HTTP(S) POST mode of the By-Reference OpenURL Transport, the query string specified
in Section 20.1 is carried in the message body of the HTTP(S) POST. The Content-Type of the
HTTP(S) request must be application/x-www-form-urlencoded. Hence, the message body
must be URL-encoded.

Example 24: By-Reference OpenURL Transport using HTTP POST

Formatted for readability:
Base URL: http://www.example.net/menu
POST http://www.example.net/menu HTTP/1.0
Content-Length: 161
Content-Type: application/x-www-form-urlencoded

 url_ver = Z39.88-2004
& url_tim = 2002-08-16T17:23:45Z
& url_ctx_fmt = info:ofi/fmt:xml:xsd:ctx
& url_ctx_ref = http://www.example.net/temp/12587.xml

URL-encoded:
url_ver=Z39.88-2004&url_tim=2002-08-16T17%3A23%3A45Z&url_ctx_fmt=info%3A
ofi%2Ffmt%3Axml%3Axsd%3Actx&url_ctx_ref=http%3A%2F%2Fwww.example.net%2Ft
emp%2F12587.xml

Example 24 illustrates the HTTP POST method of the By-Reference OpenURL Transport of the
network location of a KEV ContextObject Representation. The first part is formatted for
readability, and the second part is URL-encoded query string formatted for actual use. The base
URL of the Transport (the network location of the Resolver) is http://www.example.net/menu.

21 By-Value OpenURL Transports

A By-Value OpenURL Transport transports the actual ContextObject Representation, not its
network location. Depending on the constraints of the ContextObject Format, the Representation
may contain the description of one or more ContextObjects. The By-Value OpenURL Transport
may transport a ContextObject Representation that conforms to any registered ContextObject
Format.

The By-Value OpenURL Transport uses the HTTP network protocol or its secure sibling, HTTPS.
The Registry Identifiers for these Transports are:

By-Value OpenURL Transport over HTTP info:ofi/tsp:http:openurl-by-val
By-Value OpenURL Transport over HTTPS info:ofi/tsp:https:openurl-by-val

This Section describes both Transports, which are identical except for their use of HTTP or
HTTPS as the respective network protocol.

ANSI/NISO Z39.88-2004 PART 4

78 © 2005 NISO

For each transportation via the By-Value OpenURL Transport, a base URL specifies the “Internet
host and port, and path” of the target of the transportation, an HTTP(S)-based service called a
Resolver.

A By-Value OpenURL Transport may convey a ContextObject Representation via HTTP(S) GET
or HTTP(S) POST.

Appendix E provides implementation guidelines for the By-Value OpenURL Transports.

21.1 OpenURL Keys in By-Value OpenURL Transports

A By-Value OpenURL Transport uses KEV pairs with the following keys, either in the query string
of an HTTP(S) GET request or in the message body of an HTTP(S) POST:

url_ver: OpenURL signature

• Required

• Maximum occurrence: 1

• Format: fixed value is the case-sensitive character string “Z39.88-2004”

• Character set and character encoding: value is US-ASCII

• Example: url_ver=Z39.88-2004

url_tim: Datetime of the creation of the OpenURL

• Optional

• Maximum occurrence: 1

• Format: ISO8601-conformant datetime, in the YYYY-MM-DD or
YYYY-MM-DDTHH:MM:SSZ representation

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability): url_tim=2002-08-16T17:23:45Z

url_ctx_fmt: Registry Identifier of the ContextObject Format of the transported ContextObject
Representation

• Required

• Maximum occurrence: 1

• Format: Registry Identifiers for ContextObject Formats (see Section 6.2)

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability): url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx

url_ctx_val: The actual ContextObject Representation expressed according to a registered
ContextObject Format

• Required

• Maximum occurrence: 1

• Dependency: requires url_ctx_fmt

• Format: ContextObject Representation conforming to a registered ContextObject Format.
The value of the url_ctx_val key is a character string containing the actual ContextObject
Representation.

• Character set and character encoding: The character set and character encoding of the
value is the Character Encoding applied by the ContextObject Format used in the

PART 4 ANSI/NISO Z39.88-2004

© 2005 NISO 79

transported ContextObject Representation. In the KEV ContextObject Format, the default
Character Encoding is info:ofi/enc:UTF-8. The ContextObject Representation may
specify other Character Encodings in the value associated with the ctx_enc key.
However, because values are URL-encoded in the KEV ContextObject Format, the
ContextObject Representation provided as the value of the url_ctx_val key must be US-
ASCII. When provided on a By-Value OpenURL Transport, the value of the url_ctx_val
key may need further URL-encoding.

• Example (not URL-encoded for readability):
url_ctx_val= rft_id=info:doi/10.1126/science.275.5304.1320

A foreign key in the By-Value OpenURL Transport is any key that is not an OpenURL key.
Foreign keys may be used in a By-Value OpenURL Transport, but their meaning is not defined by
the Transport. Resolvers may ignore KEV pairs with foreign keys.

21.2 By-Value OpenURL Transports using HTTP(S) GET

In the HTTP(S) GET mode of the By-Value OpenURL Transport, KEV pairs described in Section
21.1 are concatenated with the ampersand character (‘&’) to form the query string of an HTTP(S)
GET request. The resulting query string is appended to the base URL of the target Resolver, and
separated from it by a question mark (‘?’). As specified by the syntax rules for URIs [6], the query
string following this question mark must be URL-encoded.

Example 25: By-Value OpenURL Transport using HTTP GET

Formatted for readability:
http://www.example.net/menu?
 url_ver = Z39.88-2004
 & url_tim = 2002-08-16T17:23:45Z
 & url_ctx_fmt = info:ofi/fmt:kev:mtx:ctx
 & url_ctx_val = rft_id=info:doi/10.1126/science.275.5304.1320

URL-encoded:
url_ver=Z39.88-2004&url_tim=2002-08-16T17%3A23%3A45Z&url_ctx_fmt=info%3A
ofi%2Ffmt%3Akev%3Amtx%3Actx&url_ctx_val=rft_id%3Dinfo%253Adoi%252F10.112
6%252Fscience.275.5304.1320

Example 25 illustrates the HTTP GET method of the By-Value OpenURL Transport of a KEV
ContextObject Representation. The first part is formatted for readability: the query string is not
URL encoded, white space is introduced, and KEV pairs are on separate lines. The second part
is formatted for actual use with a URL-encoded query string.

The base URL of the Transport (the network location of the Resolver) is
http://www.example.net/menu. The value assigned to the url_ctx_fmt key is
info:ofi/fmt:kev:mtx:ctx. This declares that the transported ContextObject Representation is
based on the KEV ContextObject Format.

The value assigned to the url_ctx_val key is the actual KEV ContextObject Representation. Note
how this value is URL-encoded twice. The first URL-encoding is required by the KEV
ContextObject Format (see Section 13.4). It encodes the values assigned to the keys. The
second URL-encoding is required by the syntax rules for URIs (see IETF RFC 2396 [6]). It
encodes the KEV ContextObject Representation. The first encoding of

rft_id=info:doi/10.1126/science.275.5304.1320
replaces the colon character (‘:’) with the character string “%3A” and the forward slash character
(‘/’) with the character string “%2F” to obtain

rft_id=info%3Adoi%2F10.1126%2Fscience.275.5304.1320

ANSI/NISO Z39.88-2004 PART 4

80 © 2005 NISO

The second URL-encoding replaces the equals character (‘=’) with the character string “%3D”
and the percent character (‘%’) with the character string “%25” to obtain

rft_id%3Dinfo%253Adoi%252F10.1126%252Fscience.275.5304.1320

21.3 By-Value OpenURL Transports using HTTP(S) POST

In the HTTP(S) POST mode of the By-Value OpenURL Transport, the query string specified in
Section 21.1 is carried in the message body of the HTTP(S) POST. The Content-Type of the
HTTP(S) request must be application/x-www-form-urlencoded. Hence, the message body
must be URL-encoded.

Example 26: By-Value OpenURL Transport using HTTP POST

Formatted for readability:
base URL : http://www.example.net/menu

POST http://www.example.net/menu HTTP/1.0
Content-Length: 1279
Content-Type: application/x-www-form-urlencoded

 url_ver = Z39.88-2004
& url_tim = 2002-03-20T08:55:12Z
& url_ctx_fmt = info:ofi/fmt:xml:xsd:ctx
& url_ctx_val = <?xml version="1.0" encoding="UTF-8"?>

<ctx:context-object xmlns:ctx="info:ofi/fmt:xml:xsd:ctx"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="info:ofi/fmt:xml:xsd:ctx
http://www.openurl.info/registry/docs/info:ofi/fmt:xml:xsd:ctx"
timestamp="2002-06-14T12:13:00Z" version="Z39.88-2004" identifier="125">

 <ctx:referent>
 <ctx:identifier>info:doi/10.1126/science.275.5304.1320
 </ctx:identifier>
 <ctx:identifier>info:pmid/9036860</ctx:identifier>

</ctx:referent>
<ctx:referring-entity>
 <ctx:identifier>info:doi/10.1006/mthe.2000.0239</ctx:identifier>
</ctx:referring-entity>
<ctx:requester>
 <ctx:identifier>mailto:jane.doe@caltech.edu</ctx:identifier>
</ctx:requester>
<ctx:referrer>
 <ctx:identifier>info:sid/elsevier.com:ScienceDirect</ctx:identifier>
</ctx:referrer>

</ctx:context-object>

PART 4 ANSI/NISO Z39.88-2004

© 2005 NISO 81

URL-encoded:
url_ver=Z39.88-2004&url_tim=2002-03-20T08%3A55%3A12Z&url_ctx_fmt=info%3Ao
fi%2Ffmt%3Axml%3Axsd%3Actx&url_ctx_val=%3C%3Fxml%20version%3D%221.0%22%20
encoding%3D%22UTF-8%22%3F%3E%0D%3Cctx%3Acontext-object%20xmlns%3Actx%3D%2
2info%3Aofi%2Ffmt%3Axml%3Axsd%3Actx%22%20xmlns%3Axsi%3D%22http%3A%2F%2Fww
w.w3.org%2F2001%2FXMLSchema-instance%22%20xsi%3AschemaLocation%3D%22info%
3Aofi%2Ffmt%3Axml%3Axsd%3Actx%20http%3A%2F%2Fwww.openurl.info%2Fregistry%
2Fdocs%2Finfo%3Aofi%2Ffmt%3Axml%3Axsd%3Actx%22%20timestamp%3D%222002-06-1
4T12%3A13%3A00Z%22%20version%3D%22Z39.88-2004%22%20identifier%3D%22125%22
%3E%0D%3Cctx%3Areferent%3E%0D%3Cctx%3Aidentifier%3Einfo%3Adoi%2F10.1126%2
Fscience.275.5304.1320%3C%2Fctx%3Aidentifier%3E%0D%3Cctx%3Aidentifier%3Ei
nfo%3Apmid%2F9036860%3C%2Fctx%3Aidentifier%3E%0D%3C%2Fctx%3Areferent%3E%0
D%3Cctx%3Areferring-entity%3E%0D%3Cctx%3Aidentifier%3Einfo%3Adoi%2F10.100
6%2Fmthe.2000.0239%3C%2Fctx%3Aidentifier%3E%0D%3C%2Fctx%3Areferring-entit
y%3E%0D%3Cctx%3Arequester%3E%0D%3Cctx%3Aidentifier%3Emailto%3Ajane.doe%40
caltech.edu%3C%2Fctx%3Aidentifier%3E%0D%3C%2Fctx%3Arequester%3E%0D%3Cctx%
3Areferrer%3E%0D%3Cctx%3Aidentifier%3Einfo%3Asid%2Felsevier.com%3AScience
Direct%3C%2Fctx%3Aidentifier%3E%0D%3C%2Fctx%3Areferrer%3E%0D%3C%2Fctx%3Ac
ontext-object%3E%0D

Example 26 illustrates the HTTP POST method of the By-Value OpenURL Transport of an XML
ContextObject Representation. The first part is formatted for readability, and the second part is
formatted for actual use with a double URL-encoding as explained in Section 21.2.
The base URL of the Transport (the network location of the Resolver) is
http://www.example.net/menu. The value assigned to the url_ctx_fmt key is
info:ofi/fmt:xml:xsd:ctx. This declares that the transported ContextObject Representation is
based on the XML ContextObject Format. The XML ContextObject Representation is provided as
the value assigned to the url_ctx_val key.
As noted in Table 20, the XML ContextObject Format allows bundling multiple ContextObjects
into one XML ContextObject Representation. An XML ContextObject Representation may,
therefore, contain the description of multiple ContextObjects, all of which are conveyed in a single
transportation.

22 Inline OpenURL Transports

An Inline OpenURL Transport transports exactly one KEV ContextObject Representation as part
of the query string used in an HTTP(S) GET request or in the message body of an HTTP(S)
POST. This differs from the By-Value OpenURL Transport, where the KEV ContextObject
Representation is the value associated with the url_ctx_val key.

The Inline OpenURL Transport strongly resembles OpenURL 0.1. The Inline OpenURL Transport
may be used only for the transportation of one, and only one, KEV ContextObject
Representation. It must not be used for the transportation of ContextObject Representations that
conform to any other ContextObject Format.

The Inline OpenURL Transport uses the HTTP network protocol or its secure sibling, HTTPS. The
Registry Identifiers for these Transports are:

Inline OpenURL Transport over HTTP info:ofi/tsp:http:openurl-inline
Inline OpenURL Transport over HTTPS info:ofi/tsp:https:openurl-inline

This Section describes both Transports, which are identical except for their use of HTTP or
HTTPS as the respective network protocol.

ANSI/NISO Z39.88-2004 PART 4

82 © 2005 NISO

For each transportation of a KEV ContextObject Representation via the Inline OpenURL
Transport, a base URL specifies the “Internet host and port, and path” of the target of the
transportation, an HTTP(S)-based service called a Resolver.

An Inline OpenURL Transport conveys exactly one KEV ContextObject Representation via
HTTP(S) GET and HTTP(S) POST.

The KEV ContextObject Format supports Character Encodings other than the default UTF-8
encoded Unicode. As a result, it is possible to submit KEV ContextObjects Representations via
HTML forms. The Character Encoding is declared by assigning a value to the ctx_enc key. This
value must be a Registry Identifier of a registered Character Encoding.

Appendix E provides implementation guidelines for the Inline OpenURL Transports.

22.1 OpenURL Keys in Inline OpenURL Transports

An Inline OpenURL Transport uses KEV pairs with the following keys, either in the query string of
an HTTP(S) GET request or in the message body of an HTTP(S) POST:

url_ver: OpenURL signature

• Required

• Maximum occurrence: 1

• Format: fixed value is the case-sensitive character string “Z39.88-2004”

• Character set and character encoding: value is US-ASCII

• Example: url_ver=Z39.88-2004

url_tim: Datetime of the creation of the OpenURL

• Optional

• Maximum occurrence: 1

• Format: ISO8601-conformant datetime, in the YYYY-MM-DD or
YYYY-MM-DDTHH:MM:SSZ representation

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability): url_tim=2002-08-16T17:23:45Z

url_ctx_fmt: Registry Identifier of the ContextObject Format of the transported ContextObject
Representation, which must be the KEV ContextObject Format

• Optional

• Maximum occurrence: 1

• Format: fixed value info:ofi/fmt:kev:mtx:ctx

• Character set and character encoding: value is US-ASCII and may need URL-encoding

• Example (not URL-encoded for readability): url_ctx_fmt=info:ofi/fmt:kev:mtx:ctx

A foreign key in the Inline OpenURL Transports is any key that is not:

• One of the above OpenURL keys

• A key from the KEV ContextObject Format, which are:

− Administrative keys (prefixed by ctx_).The first encoding is called for by the KEV
ContextObject Format; see Section 13.4. The second encoding is called for by the
syntax rules for URIs; see IETF RFC 2396 [6].

PART 4 ANSI/NISO Z39.88-2004

© 2005 NISO 83

− Entity Keys (prefixed by rft_, rfe_, req_, rfr_, res_, or svc_).

− Keys from KEV Metadata Formats (prefixed by rft., rfe., req., rfr., res., or svc.).

Foreign keys may be used in an Inline OpenURL Transport, but their meaning is not defined by
the Transport. Resolvers may ignore KEV pairs with foreign keys.

22.2 Inline OpenURL Transports using HTTP(S) GET

In the HTTP(S) GET mode of the Inline OpenURL Transport, the query string of an HTTP(S) GET
request is the union of the following three sets of KEV pairs:

• A set of KEV pairs with keys from the list of the OpenURL keys described in Section 22.1

• A set of KEV pairs from one, and only one, KEV ContextObject Representation

• A set of KEV pairs with foreign keys, which have no meaning assigned by the OpenURL
Framework and may be ignored by Resolvers

It is recommended to strip the query string from a leading ampersand (if there is one).

The resulting set of KEV pairs is expressed as an ampersand-delimited string. The order in which
the KEV pairs happen to be concatenated in that string is insignificant, and no meaning should
be inferred from the order.

The resulting query string is appended to the base URL of the target Resolver, and separated
from it by a question mark (‘?’). As specified by the syntax rules for URIs [6], the query string
following this question mark must be URL-encoded. Note that, by definition of the KEV
ContextObject Format, the values of all KEV pairs in a KEV ContextObject Representation are
URL-encoded.

Example 27: Inline OpenURL Transport using HTTP GET

Formatted for readability:
http://www.example.net/menu?
url_ver = Z39.88-2004
& url_tim = 2002-03-20T08:55:12Z
& url_ctx_fmt = info:ofi/fmt:kev:mtx:ctx
& rft_id = info:doi/10.1126/science.275.5304.1320
& rft_id = info:pmid/9036860
& rft_val_fmt = info:ofi/fmt:kev:mtx:journal
& rft.jtitle = Science
& rft.atitle = Isolation of a common receptor for coxsackie B viruses
and adenoviruses 2 and 5
& rft.aulast = Bergelson
& rft.auinit = J
& rft.date = 1997
& rft.volume = 275
& rft.spage = 1320
& rft.epage = 1323
& rfe_id = info:doi/10.1006/mthe.2000.0239
& rfr_id = info:sid/elsevier.com:ScienceDirect
& req_id = mailto:jane.doe@caltech.edu
& ctx_tim = 2002-03-20T08:55:12Z
& ctx_enc = info:ofi/enc:UTF-8

ANSI/NISO Z39.88-2004 PART 4

84 © 2005 NISO

URL-encoded:
http://www.example.net/menu?url_ver=Z39.88-2004&url_tim=2002-03-20T08%3A5
5%3A12Z&url_ctx_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Actx&rft_id=info%3Adoi%
2F10.1126%2Fscience.275.5304.1320&rft_id=info%3Apmid%2F9036860&rft_val_fm
t=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.jtitle=Science&rft.atitle=Is
olation%20of%20a%20common%20receptor%20for%20coxsackie%20%20B%20viruses%2
0and%20adenoviruses%202%20and%20%205&rft.aulast=Bergelson&rft.auinit=J&rf
t.date=1997&rft.volume=275&rft.spage=1320&rft.epage=1323&rfe_id=info%3Ado
i%2F10.1006%2Fmthe.2000.0239&rfr_id=info%3Asid%2Felsevier.com%3AScienceDi
rect&req_id=mailto%3Ajane.doe%40caltech.edu&ctx_tim=2002-03-20T08%3A55%3A
12Z&ctx_enc=info%3Aofi%2Fenc%3AUTF-8

Example 27 illustrates the HTTP GET method of the Inline OpenURL Transport of a KEV
ContextObject Representation. The first part is formatted for readability: the query string is not
URL encoded, white space is introduced, and KEV pairs are on separate lines. The second part
is formatted for actual use with a URL-encoded query string.

The base URL of the Transport (the network location of the Resolver) is
http://www.example.net/menu. The value assigned to the url_ctx_fmt key is
info:ofi/fmt:kev:mtx:ctx. This declares that the transported ContextObject Representation is
based on the KEV ContextObject Format (as is required for an Inline OpenURL Transport). The
absence of both the url_ctx_ref and url_ctx_val keys indicates that this is an Inline OpenURL
Transport. (The presence of the url_ctx_ref key would have indicated a By-Reference OpenURL
Transport. The presence of the url_ctx_val key would have indicated a By-Value OpenURL
Transport.)

The KEV pairs starting with & rft_id = info:doi/10.1126/science.275.5304.1320 and ending with
& ctx_enc = info:ofi/enc:UTF-8 form the KEV ContextObject Representation, consisting of two
Identifier Descriptors for the Referent (rft_id), a By-Value Metadata Descriptor for the Referent
(rft_val_fmt, keys with a rft. prefix), one Identifier Descriptor for a ReferringEntity (rfe_id), one
Identifier Descriptor for a Referrer (rfr_id), and one Identifier Descriptor for a Requester (req_id).
The last two KEV pairs specify the time of creation of the ContextObject Representation (ctx_tim)
and the Character Encoding used (ctx_enc).

The By-Value Metadata Descriptor of the Referent consists of two parts. The first part is a KEV
pair that declares the Metadata Format (rft_val_fmt = info:ofi/fmt:kev:mtx:journal), in this case
a journal publication in the KEV Metadata Format. The second part is a set of KEV pairs that
specify the actual metadata in the specified KEV Metadata Format. These KEV pairs have keys
with the rft. prefix to indicate that they represent the Referent.

22.3 Inline OpenURL Transports using HTTP(S) POST

In the HTTP(S) POST mode of the Inline OpenURL Transport, the query string specified in
Section 22.2 is carried in the message body of the HTTP(S) POST. The Content-Type of the
HTTP(S) request must be application/x-www-form-urlencoded. Hence, the message body
must be URL-encoded. Note that the KEV ContextObject Format already requires that values of
all KEV pairs occurring in a KEV ContextObject Representation be URL-encoded.

Example 28 shows an HTML form that uses the POST method. It is assumed that the form is
inserted in an HTML page that uses UTF-8 for character encoding. The result of submitting the
form is the Inline OpenURL Transport of Example 29. It illustrates the HTTP POST method of the
Inline OpenURL Transport of a KEV ContextObject Representation. The base URL of the
Transport is the network location of the Resolver: http://www.example.net/menu.

PART 4 ANSI/NISO Z39.88-2004

© 2005 NISO 85

Example 28: An HTML Form (POST Method) to generate an Inline OpenURL Transport

<form method="POST" action="http://www.example.net/menu">
<input type="hidden" name="url_ver" value="Z39.88-2004">
<input type="hidden" name="url_ctx_fmt"
value="info:ofi/fmt:kev:mtx:ctx">
<input type="hidden" name="rft_id"
value="info:doi/10.1126/science.275.5304.1320">
<input type="hidden" name="rft_id" value="info:pmid/9036860">
<input type="hidden" name="rft_val_fmt"
value="info:ofi/fmt:kev:mtx:journal">
<input type="hidden" name="rft.jtitle" value="Science">
<input type="hidden" name="rft.atitle" value="Isolation of a common
receptor for coxsackie B viruses and adenoviruses 2 and 5">
<input type="hidden" name="rft.aulast" value="Bergelson">
<input type="hidden" name="rft.auinit" value="J">
<input type="hidden" name="rft.date" value="1997">
<input type="hidden" name="rft.volume" value="275">
<input type="hidden" name="rft.spage" value="1320">
<input type="hidden" name="rft.epage" value="1323">
<input type="hidden" name="req_id" value="
mailto:jane.doe@caltech.edu">
<input type="hidden" name="rfr_id"
 value="info:sid/elsevier.com:ScienceDirect">
<input type="hidden" name="ctx_tim" value="2002-03-20T08:55:12Z">
<input type="hidden" name="ctx_enc" value="info:ofi/enc:UTF-8">
<input type="submit" value="send OpenURL">
</form>

Example 29: Inline OpenURL Transport using HTTP POST

Formatted for readability:
base URL : http://www.example.net/menu

POST http://www.example.net/menu HTTP/1.0
Content-Length: 1480
Content-Type: application/x-www-form-urlencoded

 url_ver = Z39.88-2004
& url_tim = 2002-03-20T08:55:12Z
& url_ctx_fmt = info:ofi/fmt:kev:mtx:ctx
& rft_id = info:doi/10.1126/science.275.5304.1320
& rft_id = info:pmid/9036860
& rft_val_fmt = info:ofi/fmt:kev:mtx:journal
& rft.jtitle = Science
& rft.atitle = Isolation of a common receptor for coxsackie B
viruses and adenoviruses 2 and 5
& rft.aulast = Bergelson
& rft.auinit = J
& rft.date = 1997

ANSI/NISO Z39.88-2004 PART 4

86 © 2005 NISO

& rft.volume = 275
& rft.spage = 1320
& rft.epage = 1323
& rfe_id = info:doi/10.1006/mthe.2000.0239
& rfr_id = info:sid/elsevier.com:ScienceDirect
& req_id = mailto:jane.doe@caltech.edu
& ctx_tim = 2002-03-20T08:55:12Z
& ctx_enc = info:ofi/enc:UTF-8

The URL-encoded message body is the same as the URL-encoded part of Example 27.

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 87

Appendix A
Responsibilities of the Maintenance Agency for the OpenURL

Framework Standard
(informative)

(This appendix is not part of The OpenURL Framework for Context Sensitive Services,
ANSI/NISO Z39.88-2004. It is included for information only.)

Upon approval of this Standard, NISO will establish one or more Maintenance Agencies for the
OpenURL standard. The primary responsibility of a Maintenance Agency is to provide ongoing
maintenance of the Registry to guarantee stability. Specifically, a Maintenance Agency is
responsible to:

• Develop processes and procedures for Registry maintenance and updating consistent with
this Standard.

• Facilitate the registration of new entries.
When introducing new items into the Registry, a Maintenance Agency should maintain the
Registry structure described in Section 6.3. If necessary, a Maintenance Agency may create
new areas in the Registry to accommodate new types of Registry entries.

• Correct registry errors.
Registered entries are fixed and unchangeable to the maximum practical extent possible.
Under exceptional circumstances and with adequate community notification, a Maintenance
Agency may correct errors in registered entries. However, a Maintenance Agency must not
alter entries for the purpose of introducing new features or accommodating evolving usage.
Instead, such evolution must be implemented through the registration of new entries.

• Provide an appropriate machine interface for downloading Registry materials.
The initial Registry developed by the Committee supports the Open Archives Initiative
Protocol for Metadata Harvesting (OAI-PMH) [17]. Systems may cache Registry materials
locally to ensure reliable operation, whether or not the Registry is available. It is the
responsibility of system developers to update their cached copies.

• Create and maintain an area in the Registry dedicated to security considerations.
In this area, the Maintenance Agency should post implementation guidelines and/or
requirements to prevent abuse of the OpenURL Framework.

ANSI/NISO Z39.88-2004 APPENDICES

88 © 2005 NISO

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 89

Appendix B
Specification of the Z39.88-2004 Matrix Constraint Language

(normative)

B.1 The Z39.88-2004 Matrix Constraint Language

Registry Identifier info:ofi/fmt:kev:mtx

The Z39.88-2004 Matrix Constraint Language is used to specify constraints for descriptions of
resources expressed using the KEV Serialization. The Z39.88-2004 Matrix Constraint Language is
used to define the syntax and semantics of the KEV ContextObject Format and KEV Metadata
Formats.

The Z39.88-2004 Matrix document is expressed in XHTML using a table format to define keys and
data types of potential values for the keys. Table 24 displays the complete XHTML underlying the
construction of Z39.88-2004 Matrices. This is also available in the Registry at
<http://www.openurl.info/registry/docs/html/mtx.html>.

Table 23: Structure of the Z39.88-2004 Matrix

Delim Key Equals Value Min Max Description
& [** Key **] = <[** Value **]> 0 1 [** Item definition **]
[** ... **] [** … **] [** … **] [** … **] [** … **] [** This is a comment row **]

Table 23 shows the structure of a Z39.88-2004 Matrix. It consists of the following columns:

• Delim: the ampersand character (‘&’) delimiter for rows containing syntax rules or the hash
character (‘#’) for comment rows

• Key: the key being defined

• Equals character (‘=’)

• Value: the data type for the value associated with the key

• Min: the minimum occurrence allowed for the key; an integer

• Max: the maximum occurrence allowed for the key; an integer or an asterisk character (‘*’) to
denote ‘unbounded’

• Description: a full name of the key, a semantic definition of the key, and any further
information

Each row of the Z39.88-2004 Matrix with an ampersand character (‘&’) in the first column describes
the construction of a valid KEV pair. Rows of the Z39.88-2004 Matrix that have a hash character (‘#’)
in the first column are comment rows and must be ignored.

One valid KEV pair is obtained by concatenating table entries from the first four columns of a Z39.88-
2004 Matrix row that begins with an ampersand character (‘&’). Several valid KEV pairs may be
concatenated to obtain a description of a resource compliant with a Z39.88-2004 Constraint
Definition. The order in which KEV pairs are concatenated is not important.

In comment rows, replace the character string “[** ... **]” with descriptive text. Descriptive text must
not occur in the Delim column. Usually, only the Description column contains descriptive text.

In the Key column of non-comment rows, the character string “[** Key **]” must be replaced with the
name of a valid key.

http://www.openurl.info/registry/docs/html/mtx.html

ANSI/NISO Z39.88-2004 APPENDICES

90 © 2005 NISO

The Value column of a non-comment row of the Z39.88-2004 Matrix assigns a data type to the key,
and [** Value **] should be replaced with one of the following available data types:

• <data>: character string

• <id>: character string for an Identifier (Section 5.2.1)

• <fmt-id>: character string for a Format Identifier (Sections 8.2 and 9.2)

• <m-key>: character string for a metadata key (Section 14.2)

• <url>: character string for a URL [6]

• <date>: character string of the form [YYYY-MM-DD| YYYY-MM | YYYY], which represents a
date formatted according to the W3C DTF profile of ISO 8601 [12]

• <time>: character string of the form [YYYY-MM-DDThh:mm:ssTZD], which represents a
complete date plus hours, minutes, and seconds formatted according to the W3C DTF profile
of ISO 8601 [12]

In the Description column, [** Item definition **] should be replaced with descriptive text containing
the full name of the key, a semantic definition of the key, and any additional useful information.

B.2 Constraint Definitions in the KEV ContextObject Format

The main Constraint Definition associated with the KEV Serialization and the Z39.88-2004 Matrix
Constraint Language is the KEV ContextObject Format. This Format defines the Representation of a
ContextObject as a concatenation of KEV pairs of the form &key=value.

In addition, there are Constraint Definitions known as KEV Metadata Formats that define the
Representation of Entities of ContextObjects as a concatenation of KEV pairs. These
Representations may be used for both By-Value and/or By-Reference Metadata Descriptors.

In the Registry, a Constraint Definition for a Format expressed in the Z39.88-2004 Matrix Constraint
Language is described by the following metadata:

• dc:title: the title of the Format

• dc:creator: the name of the community that defined the Format

• dc:description: a brief description of the Format

• dc:identifier: a locator of the Z39.88-2004 Matrix that defines the Format

• dcterms:created: the date when the Format was created

• dcterms:modified: the date when the Format was modified

Z39.88-2004 Matrix definitions are primarily intended for human reading. To this end, the XHTML
Matrix has an associated style sheet that displays the first four rows of each column in bold type to
highlight the syntax embedded in the Matrix. However, machine reading is supported, and each cell
of the Matrix has an associated class attribute. The W3C XHTML validator button at the foot of the
page should be used to validate the XHTML Matrix.

The template for the Z39.88-2004 Matrix displayed in Table 24, which may be used in the creation of
KEV ContextObject and Metadata Formats, is also available in the Registry at
<http://www.openurl.info/registry/docs/html/mtx.html>.

http://www.openurl.info/registry/docs/html/mtx.html

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 91

Table 24: XHTML Template for Z39.88-2004 Matrix

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>[** XX **] Format Matrix</title>
<link rel="schema.DC" href="http://purl.org/DC/elements/1.0/"
title="Dublin Core Metadata Element Set, Version 1.1" />
<meta name="DC.title" content="[** XX **] Template Matrix" />
<meta name="DC.creator" content="NISO Committee AX" />
<meta name="DC.subject" content="OpenURL; ContextObject" />
<meta name="DC.date" scheme="W3CDTF" content="[** YYYY-MM-DD **]" />
<meta name="DC.type" content="Text" />
<meta name="DC.format" scheme="IMT" content="text/html" />
<meta name="DC.identifier" content="[** URI of mtx_?.html **]" />
<meta name="DC.language" content="en" />
<style type="text/css">
body {background: white none; color: black; font-family: arial, helvetica,
sans-serif}
p, h1, h2, h3, tr, th, td, li, ul, ol, dl, dt, dd {font-family:
arial,helvetica,sans-serif}
h1 {font-size: 140%; font-weight: bold}
h2 {font-size: 120%; font-weight: bold}
h3 {font-size: 110%; font-weight: bold}
.mtxDelim, .mtxKey, .mtxEquals, .mtxValueType {font-weight: bold}
</style></head>
<body>
<!-- Template for Z39.88-2004 Matrix. Fill in the blanks - marked [** ...
**] -->

<h1>Matrix defining the KEV [** XX **] Format</h1>
<hr /><p></p>

<table summary="Matrix administrative metadata" dir="ltr" border="1">
<tr><th scope="row" align="left">dc:title</th>
<td class="fmtTitle">KEV [** XX **] Format</td></tr>
<tr><th scope="row" align="left">dc:creator</th>
<td class="fmtCreator">NISO Committee AX, OpenURL Standards
Committee</td></tr>
<tr><th scope="row" align="left">dc:description</th>
<td class="fmtDesc">This Matrix represents the [** XX **] Format as a
string of ampersand-delimited Key/Encoded-Value pairs</td></tr>
<tr><th scope="row" align="left">dc:identifier</th>
<td class="fmtId">info:ofi/fmt:kev:mtx:[**format-id**]</td></tr>
<tr><th scope="row" align="left">dcterms:created</th>
<td class="fmtCreateDate">[** YYYY-MM-DD **]</td></tr>
<tr><th scope="row" align="left">dcterms:modified</th>
<td class="fmtUpdateDate"> </td></tr>

ANSI/NISO Z39.88-2004 APPENDICES

92 © 2005 NISO

</table>

<p>A representation of a Key/Encoded-Value pair is generated by
concatenating the contents of the first four columns of a row that begins
with an ampersand in the Matrix below. The ordering
of KEV pairs is not important. Rows which have '#' in the first column are
comments and should not be included in the
representation.</p>

<p>The following data types are provided for the values of the Keys, which
must be URL-encoded:</p>

<table summary="Matrix data types" dir="ltr" border="1">
<tr><th scope="row" align="left"><data></th>
<td class="mtxData">Character string</td></tr>
<tr><th scope="row" align="left"><id></th>
<td class="mtxId">Character string for an Identifier (Z39.88-2004, Part 1,
Section 7)</td></tr>
<tr><th scope="row" align="left"><fmt-id></th>
<td class="mtxFmtId">Character string for a Format Identifier (Z39.88-
2004, Part 1, Section 12)</td></tr>
<tr><th scope="row" align="left"><m-key></th>
<td class="mtxMkey">Character string for a Metadata Key (Z39.88-2004, Part
2, Section 8.1)</td></tr>
<tr><th scope="row" align="left"><url></th>
<td class="mtxURL">Character string for a URL</td></tr>
<tr><th scope="row" align="left"><date></th>
<td class="mtxDate">Character string representing a date to the complete
date level of the W3CDTF
profile of ISO 8601, of the form: [YYYY-MM-DD | YYYY-MM | YYYY
]</td></tr>
<tr><th scope="row" align="left"><time></th>
<td class="mtxTime">Character string representing a date to the seconds
level of the W3CDTF
profile of ISO 8601, of the form: [YYYY-MM-DDThh:mm:ssTZD | YYYY-MM-DD
]</td></tr>
</table>

<p>Abbreviations in column headings:</p>

Delim - Delimiter
Min - minimum occurrence
Max - maximum occurrence ('*' = unbounded)

<h2>The Matrix</h2>

<!-- Start of table representing Matrix -->
<table class="fmtMatrix" summary="KEV [** XX **] Format Matrix" dir="ltr"

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 93

border="1">
<!-- Table heading -->
<tr><th scope="col">Delim</th><th scope="col">Key</th><th
scope="col">Equals</th>
<th scope="col">Value</th><th scope="col">Min</th><th scope="col">Max</th>
<th scope="col">Description</th></tr>

<!-- Key definition row repeat as required -->
<tr class="mtxRule">
<!-- Delimiter: & -->
 <td class="mtxDelim">&</td>
<!-- Key -->
 <td class="mtxKey">[** Key **]</td>
<!-- Always = -->
 <td class="mtxEquals">=</td>
<!-- Value data type from table above -->
 <td class="mtxValueType"><[** data **]></td>
<!-- Minimum occurrence: usually 0 -->
 <td class="mtxKeyMin">0</td>
<!-- Maximum occurrence: usually 1, * for unbounded -->
 <td class="mtxKeyMax">1</td>
<!-- Item description -->
 <td class="mtxKeyDesc">[** Item definition and comment **]</td>
</tr>

<!-- This is an example comment row -->
<tr class="mtxRule">
 <td class="mtxComment">#</td>
 <td class="mtxComKey">[**...**]</td>
 <td class="mtxComEquals"> </td>
 <td class="mtxComValue"> </td>
 <td class="mtxKeyMin">0</td>
 <td class="mtxKeyMax">1</td>
 <td class="mtxKeyDesc">[**This is a comment row**]</td>
</tr>
</table>
<hr />
<p><img
src="http://www.w3.org/Icons/valid-xhtml10.gif" width="88" height="31"
border="0" alt="[Valid XHTML 1.0!]" />
</p>
</body>
</html>

ANSI/NISO Z39.88-2004 APPENDICES

94 © 2005 NISO

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 95

Appendix C
The Level 1 San Antonio Community Profile

(informative)

An Example of a Community Profile based on the KEV ContextObject Format

(This appendix is not part of The OpenURL Framework for Context Sensitive Services,
ANSI/NISO Z39.88-2004. It is included for information only.)

C.1 History

NISO Committee AX created the Level 1 San Antonio Community Profile (SAP1) to support the
deployment of an OpenURL Framework Application in the scholarly-information community.
SAP1 is built on the KEV ContextObject Format and the OpenURL Transports specified in Part 4.
The Registry Identifier of the SAP1 Community Profile is info:ofi/pro:sap1-2004. The mandatory
XML Document that defines SAP1 is available at
< http://www.openurl.info/registry/docs/pro/info:ofi/pro:sap1-2004 >.

By including the Inline OpenURL Transport as a selected core component, SAP1 provides an
elegant migration path from the OpenURL 0.1 specification to this Standard. A description of the
upgrade process is presented in Appendix A of the Implementation Guidelines for the KEV
ContextObject Format, available in the Registry at
<http://openurl.info/registry/docs/implementation_guidelines/>.

C.2 Maintenance of SAP1

NISO Committee AX acts in an advisory capacity until a permanent Maintenance Agency for
SAP1 is appointed by NISO. The Maintenance Agency will assume overall responsibility for the
further development and maintenance of the SAP1 Community Profile.

C.3 Introduction to SAP1

SAP1 consists of those core components of the OpenURL Framework Standard that were
selected by NISO Committee AX on behalf of the scholarly-information community. As required
by the OpenURL Framework Standard, the selections are entries from the Registry for the
following components: Namespaces, Character Encodings, Serializations, Constraint Languages,
ContextObject Formats, Metadata Formats, and Transports.

As creator of this Standard, NISO Committee AX also specified the initial content of the Registry.
Although the initial Registry entries are targeted at the scholarly-information community, Registry
entries used by SAP1 may also be valuable for other communities.

http://www.openurl.info/registry/docs/pro/info:ofi/pro:sap1-2004
http://openurl.info/registry/docs/implementation_guidelines/

ANSI/NISO Z39.88-2004 APPENDICES

96 © 2005 NISO

C.4 Purpose and Scope

For the scholarly-information community, the major application of the OpenURL Framework is to
provide context-sensitive linking from a reference in online scholarly-information systems to
resources and services relevant to the referenced item. Generally, the OpenURL Framework is
used as follows:

When a user clicks a link or button on an HTML page, information about a
scholarly resource (a journal article, for example) and about the context in
which it is referenced is transported to a linking server. The transportation
mechanism is based on HTTP(S) GET or POST, and is referred to as “an
OpenURL”. The purpose of the transportation is to obtain services relevant to
the referenced scholarly resource and its context. The transported
descriptions of the referenced item and the context are contained in a
ContextObject Representation. The ContextObject has six possible Entities,
one of which — the Referent — conveys information about the referenced
item; the others — the ReferringEntity, Requester, Resolver, ServiceType,
and Referrer — convey information about the context of the reference.

Table 25 shows these six Entities together with typical examples from the scholarly-information
community. The Table also shows that the Referent is mandatory and that the other five Entities
are optional in the KEV ContextObject Format, which is used by SAP1.

Table 25: Use of ContextObject Entities in the Scholarly-Information Community

Entity Definition Mandatory
Optional

Example

Referent The Entity about which the ContextObject
was created—a referenced resource

M A referenced
journal article

ReferringEntity The Entity that references the Referent O A referencing
article on
EBSCOhost

Requester The Entity that requests services
pertaining to the Referent

O The user clicking
an OpenURL

ServiceType The Entity that defines the type of service
requested

O Fulltext, ILL, etc.

Resolver The Entity at which a request for services
is targeted

O A library’s
OpenURL linking
server

Referrer The Entity that generated the
ContextObject

O EBSCOhost

As specified by this Standard, a Community Profile must list Registry selections for the following
core components:

• One, and only one, ContextObject Format. This choice implies a selection of:

− A set of constraints on the type and number of Entities and Descriptors used in
ContextObject Representations

− A constraint on the number of ContextObjects that may be represented in an
instance document that conforms to the ContextObject Format

− One Serialization

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 97

− One Constraint Language

− One or more Character Encodings

• Metadata Formats that may be used for By-Value Metadata and/or By-Reference
Metadata descriptions. This choice implies a selection of:

− One or more Serializations

− One or more Constraint Languages

− One or more Character Encodings

• Namespaces that may be used to describe Entities with an Identifier Descriptor.

• One or more Transports that specify how ContextObject Representations in the chosen
ContextObject Format must be transported.

SAP1 is built around the KEV ContextObject Format. It selects Metadata Formats and
Namespaces that meet the needs of the scholarly-information community, and it uses the
OpenURL Transports. The SAP1 Community Profile is identified in the Registry as
info:ofi/pro:sap1-2004.

C.5 Registry Entries in SAP1

The SAP1 Community Profile is composed of the registered elements listed in Table 26:
Table 26: SAP1 Registered Elements

 Core
Component Registry Entry Registry Identifier

Namespaces Namespace for “ftp” URI Scheme info:ofi/nam:ftp:

 Namespace for “http” URI Scheme info:ofi/nam:http:

 Namespace for “https” URI Scheme info:ofi/nam:https:

 Namespace for “ldap” URI Scheme info:ofi/nam:ldap:

 Namespace for “mailto” URI Scheme info:ofi/nam:mailto:

 Namespace for “ISBN” URN Namespace info:ofi/nam:urn:ISBN:

 Namespace for “ISSN” URN Namespace info:ofi/nam:urn:ISSN:

 Namespace for “NBN” URN Namespace info:ofi/nam:urn:NBN:

 Namespace for Astrophysics Bibcodes info:ofi/nam:info:bibcode:

 Namespace for Digital Object Identifiers info:ofi/nam:info:doi:

 Namespaces for CNRI Handles info:ofi/nam:info:hdl:

 Namespaces for Library of Congress
Control Numbers

info:ofi/nam:info:lccn:

 Namespace for OAI Identifiers info:ofi/nam:info:oai:

 Namespace for identifiers assigned by
OCLC to records in the WorldCat
database

info:ofi/nam:info:oclcnum:

 Namespace for PubMed Identifiers info:ofi/nam:info:pmid:

ANSI/NISO Z39.88-2004 APPENDICES

98 © 2005 NISO

 Core
Component Registry Entry Registry Identifier

 Namespace for identifiers that follow the
info:sid scheme, mainly used for the
identification of the Referrer Entity

info:ofi/nam:info:sid:

 Namespace for SICI identifiers info:ofi/nam:info:sici:

Character
Encodings

UTF-8 Unicode info:ofi/enc:UTF-8

 ISO Latin 1 info:ofi/enc:ISO-8859-1

Serialization KEV info:ofi/fmt:kev

Constraint
Language

Z39.88-2004 Matrix info:ofi/fmt:kev:mtx

ContextObject
Format

KEV ContextObject Format info:ofi/fmt:kev:mtx:ctx

Metadata
Formats

KEV Metadata Format for Journals info:ofi/fmt:kev:mtx:journal

 KEV Metadata Format for Books info:ofi/fmt:kev:mtx:book

 KEV Metadata Format for Patents info:ofi/fmt:kev:mtx:patent

 KEV Metadata Format for ServiceTypes
for the scholarly-information community

info:ofi/fmt:kev:mtx:sch_svc

 KEV Metadata Format for Dissertations info:ofi/fmt:kev:mtx:dissertation

Transports Inline OpenURL info:ofi/tsp:http:openurl-inline

 By-Value OpenURL info:ofi/tsp:http:openurl-by-val

 By-Reference OpenURL info:ofi/tsp:http:openurl-by-ref

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 99

Appendix D
The Level 2 San Antonio Community Profile

(informative)
An Example of a Community Profile based on the XML ContextObject Format

(This appendix is not part of The OpenURL Framework for Context Sensitive Services,
ANSI/NISO Z39.88-2004. It is included for information only.)

D.1 History

NISO Committee AX created the Level 2 San Antonio Community Profile (SAP2) to support the
deployment of an OpenURL Framework Application in the scholarly-information community.
SAP2 is built on the XML ContextObject Format and the OpenURL Transports specified in Part 4.
The Registry Identifier of the SAP2 Community Profile is info:ofi/pro:sap2-2004. The mandatory
XML Document that defines SAP2 is available at
< http://www.openurl.info/registry/docs/pro/info:ofi/pro:sap2-2004 >.

D.2 Maintenance of SAP2

NISO Committee AX acts in an advisory capacity until a permanent Maintenance Agency for
SAP2 is appointed by NISO. The Maintenance Agency will assume overall responsibility for the
further development and maintenance of the SAP2 Community Profile.

D.3 Introduction to SAP2

SAP2 consists of those core components of the OpenURL Framework Standard that were
selected by NISO Committee AX on behalf of the scholarly-information community. As required
by the OpenURL Framework Standard, the selections are entries from the Registry for the
following components: Namespaces, Character Encodings, Serializations, Constraint Languages,
ContextObject Formats, Metadata Formats, and Transports.

As creator of this Standard, NISO Committee AX also specified the initial content of the Registry.
Although the initial Registry entries are targeted at the scholarly-information community, Registry
entries used by SAP2 may also be valuable for other communities.

D.4 Purpose and Scope

For the scholarly-information community, the major application of the OpenURL Framework is to
provide context-sensitive linking from a reference in online scholarly information systems to
resources and services relevant to the referenced item. Generally, the OpenURL Framework is
used as follows:

http://www.openurl.info/registry/docs/pro/info:ofi/pro:sap2-2004

ANSI/NISO Z39.88-2004 APPENDICES

100 © 2005 NISO

When a user clicks a link or button on an HTML page, information about a
scholarly resource (a journal article, for example) and about the context in
which it is referenced is transported to a linking server. The transportation
mechanism is based on HTTP(S) GET or POST, and is referred to as “an
OpenURL”. The purpose of the transportation is to obtain services relevant to
the referenced scholarly resource and its context. The transported
descriptions of the referenced item and the context are contained in a
ContextObject Representation. The ContextObject has six possible Entities,
one of which — the Referent — conveys information about the referenced
item; the others — the ReferringEntity, Requester, Resolver, ServiceType,
and Referrer — convey information about the context of the reference.

Table 27 shows these six Entities together with typical examples from the scholarly-information
community. The Table also shows that the Referent is mandatory and that the other five Entities
are optional in the XML ContextObject Format used by SAP2.

Table 27: Use of ContextObject Entities in the Scholarly-Information Community

Entity Definition Mandatory
Optional

Example

Referent The Entity about which the ContextObject
was created—a referenced resource

M A referenced
journal article

ReferringEntity The Entity that references the Referent O A referencing
article on
EBSCOhost

Requester The Entity that requests services
pertaining to the Referent

O The user clicking
an OpenURL

ServiceType The Entity that defines the type of service
requested

O Fulltext, ILL, etc.

Resolver The Entity at which a request for services
is targeted

O A library’s
OpenURL linking
server

Referrer The Entity that generated the
ContextObject

O EBSCOhost

As specified by this Standard, a Community Profile must list Registry selections for the following
core components:

• One, and only one, ContextObject Format. This choice implies a selection of:

− A set of constraints on the type and number of Entities and Descriptors used for
ContextObject Representations

− A constraint on the number of ContextObjects that may be represented in an instance
document that conforms to the ContextObject Format

− One Serialization

− One Constraint Language

− One or more Character Encodings

• Metadata Formats that may be used for By-Value Metadata and/or By-Reference
Metadata. This choice implies a selection of:

− One or more Serializations

APPENDICES ANSI/NISO Z39.88-2004

© 2005 NISO 101

− One or more Constraint Languages

− One or more Character Encodings

• Namespaces that may be used to describe Entities with an Identifier Descriptor.

• One or more Transports that specify how ContextObject Representations in the chosen
ContextObject Format must be transported.

SAP2 is built around the XML ContextObject Format. It selects Metadata Formats and
Namespaces that meet the needs of the scholarly-information community and it uses the
OpenURL Transports. The SAP2 Community Profile is identified in the Registry as
info:ofi/pro:sap2-2004.

D.5 Registry Entries in SAP2

The SAP2 Community Profile is composed of the registered elements listed in Table 28:
Table 28: SAP2 Registered Elements

Core
Component Registry Entry Registry Identifier

Namespace for “ftp” URI Scheme info:ofi/nam:ftp:

Namespace for “http” URI Scheme info:ofi/nam:http:

Namespace for “https” URI Scheme info:ofi/nam:https:

Namespace for “ldap” URI Scheme info:ofi/nam:ldap:

Namespace for “mailto” URI Scheme info:ofi/nam:mailto:

Namespace for “ISBN” URN Namespace info:ofi/nam:urn:ISBN:

Namespace for “ISSN” URN Namespace info:ofi/nam:urn:ISSN:

Namespace for “NBN” URN Namespace info:ofi/nam:urn:NBN:

Namespace for Astrophysics Bibcodes info:ofi/nam:info:bibcode:

Namespace for Digital Object Identifiers info:ofi/nam:info:doi:

Namespaces for CNRI Handles info:ofi/nam:info:hdl:

Namespaces for Library of Congress Control
Numbers

info:ofi/nam:info:lccn:

Namespace for OAI Identifiers info:ofi/nam:info:oai:

Namespace for identifiers assigned by OCLC
to records in the WorldCat database

info:ofi/nam:info:oclcnum:

Namespace for PubMed Identifiers info:ofi/nam:info:pmid:

Namespace for identifiers that follow the
info:sid scheme, mainly used for the
identification of the Referrer Entity

info:ofi/nam:info:sid:

Namespaces

Namespace for SICI identifiers info:ofi/nam:info:sici:

Character
Encodings

UTF-8 Unicode info:ofi/enc:UTF-8

Serialization W3C XML 1.0 info:ofi/fmt:xml

ANSI/NISO Z39.88-2004 APPENDICES

102 © 2005 NISO

Core
Component Registry Entry Registry Identifier

Constraint
Language

W3C XML Schema info:ofi/fmt:xml:xsd

ContextObject
Format

XML ContextObject Format info:ofi/fmt:xml:xsd:ctx

XML Metadata Format
for Journals

info:ofi/fmt:xml:xsd:journal

XML Metadata Format
for Books

info:ofi/fmt:xml:xsd:book

XML Metadata Format
for Patents

info:ofi/fmt:xml:xsd:patent

XML Metadata Format for ServiceTypes for
the scholarly-information community

info:ofi/fmt:xml:xsd:sch_svc

Metadata
Formats

XML Metadata Format
for Dissertations

info:ofi/fmt:xml:xsd:dissertation

By-Value OpenURL info:ofi/tsp:http:openurl-by-val Transports

By-Reference OpenURL info:ofi/tsp:http:openurl-by-ref

 ANSI/NISO Z39.88-2004

© 2005 NISO 103

Appendix E
Implementation Guidelines for the OpenURL Transports

(informative)

(This appendix is not part of The OpenURL Framework for Context Sensitive Services,
ANSI/NISO Z39.88-2004. It is included for information only.)

E.1 Length of HTTP(S) GET URIs

Transport techniques based on HTTP(S) GET are subject to length limitations on the GET URI.
The OpenURL Standard does not place any a priori limit on the length of an OpenURL. However,
Resolvers must be able to accept OpenURLs as long as 255 bytes after encoding and should be
able to accept OpenURLs as long as 2048 bytes.

E.2 URL-Encoding and URL-Decoding

URL-encoding and decoding of HTTP(S) GET and POST query string values prevent the
misinterpretation of special characters occurring in these values.

To form an encoded value from a value, a procedure called URL-encoding is used:

1. The alphanumeric characters ‘a’ through ‘z’, ‘A’ through ‘Z’, and ‘0’ through ‘9’ remain
unchanged.

2. The period character (‘.’), the hyphen character (‘-‘), the asterisk character (‘*’), and the
underscore character (‘_’) remain unchanged.

3. The space character (‘ ’) is replaced with a plus-sign character (‘+’) or with the character
string “%20”.

4. All other characters (the unsafe characters) are first converted into one or more bytes
using the UTF-8 encoding method (or another encoding if specified by the ContextObject
Format). Then, each byte is represented by the 3-byte string “%XY”, where XY is the two-
digit hexadecimal representation of the byte.

To form a value from an encoded value, a procedure called URL-decoding is used. It reverses the
URL-encoding procedure:

1. The plus-sign character (‘+’) is replaced by the space character (‘ ’).

2. Each instance of a three-byte string “%XY”, where XY is a hexadecimal number, is
replaced with the corresponding byte.

3. The bytes are converted to Unicode characters using UTF-8, unless otherwise specified
by a ContextObject Format.

E.3 Parsing of HTTP(S) Query Strings

Upon receiving an OpenURL request, the Resolver may parse and URL-decode the query string
into a set of KEV pairs. Depending on the type of Transport, a Resolver may encounter three
types of keys: OpenURL keys, KEV ContextObject keys, and foreign keys.

1. All OpenURL Transports use OpenURL keys. They are defined in Sections 20.1, 21.1,
and 22.1. All OpenURL keys share the prefix url_.

ANSI/NISO Z39.88-2004 APPENDICES

104 © 2005 NISO

2. In addition to the OpenURL keys, the Inline OpenURL Transport also uses keys from the
KEV ContextObject Format. These keys are defined in Section 13.2. They are:

• Administrative keys (prefixed by ctx_).

• Entity keys (prefixed by rft_, rfe_, req_, rfr_, res_, or svc_).

• Keys from KEV Metadata Formats (prefixed by rft., rfe., req., rfr., res., or svc.).

3. All Transports may use foreign keys. Foreign keys are keys that do not reside under the
categories specified by 1 and 2 above. The OpenURL Transports do not define their
meaning.

	Foreword
	Referenced Standards
	Purpose and Scope
	Notational Conventions
	Definitions
	Part 1: ContextObjects and Transports
	ContextObject, Entity, and Descriptor
	ContextObject and Entity
	Descriptor
	Identifier
	By-Value Metadata
	By-Reference Metadata
	Private Data

	Constraints

	Registry
	Registry Entries
	Registry Identifiers
	Using the Registry

	Formats
	Serializations [Registry]
	Constraint Languages [Registry]
	Constraint Definitions

	Representing ContextObjects
	Character Encodings [Registry]
	ContextObject Formats [Registry]

	Representing Entities
	Namespaces [Registry]
	Metadata Formats [Registry]

	Transporting ContextObject Representations: Transports [Regi
	Defining Applications: Community Profiles [Registry]

	Part 2: The KEV ContextObject Format
	The KEV ContextObject Format
	The KEV Serialization
	The Z39.88-2004 Matrix Constraint Language
	Constraint Definitions in the KEV ContextObject Format
	Z39.88-2004 Matrix Constraint Definitions for KEV Metadata F
	Z39.88-2004 Matrix Constraint Definition for the KEV Context

	KEV ContextObject Representations
	Cardinality Constraints on the KEV ContextObject Format
	Keys in the KEV ContextObject Format
	Keys for Entity Descriptors
	Keys for By-Value Metadata Descriptors
	Keys for By-Reference Metadata Descriptors
	Keys for Administrative Data

	Character Encoding in the KEV ContextObject Format
	URL-Encoding in the KEV ContextObject Format

	Entity Descriptors in the KEV ContextObject Format
	Identifier Descriptors
	By-Value and By-Reference Metadata Descriptors
	Rules Guiding By-Value and By-Reference Metadata Descriptors
	By-Value Metadata Descriptors
	By-Reference Metadata Descriptors

	Private Data Descriptors
	Example of a KEV ContextObject Representation

	KEV-Based Community Profiles

	Part 3: The XML ContextObject Format
	The XML ContextObject Format
	The XML Serialization
	XML Schema as a Constraint Language
	Constraint Definitions in the XML ContextObject Format
	XML Schema Constraint Definition for the XML ContextObject F
	XML Schema Constraint Definitions for XML Metadata Formats

	XML ContextObject Representations
	Cardinality Constraints on the XML ContextObject Format
	Entity and Descriptor Elements in the XML ContextObject Form
	Administrative Elements and Attributes in the XML ContextObj
	Character Encoding in the XML ContextObject Format

	Entity Descriptors in the XML ContextObject Format
	Identifier Descriptors
	By-Value and By-Reference Metadata Descriptors
	Rules Guiding By-Value and By-Reference Metadata Descriptors
	By-Value Metadata Descriptors
	By-Reference Metadata Descriptors

	Private Data Descriptors
	Example of an XML ContextObject Representation

	XML-Based Community Profiles

	Part 4: OpenURL Transports
	By-Reference OpenURL Transports
	OpenURL Keys in By-Reference OpenURL Transports
	By-Reference OpenURL Transports using HTTP(S) GET
	By-Reference OpenURL Transports using HTTP(S) POST

	By-Value OpenURL Transports
	OpenURL Keys in By-Value OpenURL Transports
	By-Value OpenURL Transports using HTTP(S) GET
	By-Value OpenURL Transports using HTTP(S) POST

	Inline OpenURL Transports
	OpenURL Keys in Inline OpenURL Transports
	Inline OpenURL Transports using HTTP(S) GET
	Inline OpenURL Transports using HTTP(S) POST

	Appendices
	Responsibilities of the Maintenance Agency for the OpenURL F
	Specification of the Z39.88-2004 Matrix Constraint Language�
	Constraint Definitions in the KEV ContextObject Format
	The Z39.88-2004 Matrix Constraint Language

	The Level 1 San Antonio Community Profile�(informative)
	History
	Maintenance of SAP1
	Introduction to SAP1
	Purpose and Scope
	Registry Entries in SAP1

	The Level 2 San Antonio Community Profile�(informative)
	History
	Maintenance of SAP2
	Introduction to SAP2
	Purpose and Scope
	Registry Entries in SAP2

	Implementation Guidelines for the OpenURL Transports�(inform
	Length of HTTP(S) GET URIs
	URL-Encoding and URL-Decoding
	Parsing of HTTP(S) Query Strings

